Assessing Decision-Making Skills in Electricity: Rasch Analysis

Authors

DOI:

https://doi.org/10.23947/2334-8496-2025-13-2-273-287

Keywords:

decision-making skills, gender, physics learning, prospective teacher, rasch analysis

Abstract

Decision-making is an essential 21st-century skill, and this is evidenced by the fact that the skill has increasingly gained attention in the current educational landscape. Accordingly, among the various competencies assessed by PISA, decision-making has been observed to be at the top of the list. This skill is particularly important, especially considering the fact that it provides college graduates with a competitive edge in the current workforce. Despite its significance, little work has been carried out to measure decision-making in the context of physics education using Rasch analysis. Therefore, this study aimed to explore the decision-making skills of prospective science teachers, with particular attention to differences based on gender and domicile. In order to achieve the stated objective, a quantitative study method was adopted, with the inclusion of 172 prospective science teachers who had received basic physics. Accordingly, data were collected using a paper-based test technique, which included six questions related to decision-making skills. The physics material utilized during the course of the study includes dynamic electricity, and in terms of the determination of validity and reliability, as well as item difficulty and differences in decision-making skills based on gender and domicile of the prospective science teacher, the Rasch measurement approach was adopted. The obtained results showed that no items could be reviewed based on gender and domicile of the observed prospective science teachers. However, a significant difference was found between the decision-making skills of participants based on gender. Following the observations, the decision-making skills of females were better than those of males, regardless of domicile. In conclusion, the decision-making skills instrument was observed to be valid and reliable. Additionally, the investigation possesses some implications for science educators in the aspect of determining differentiated physics learning designs that accommodate the abilities of students based on gender.

Downloads

Download data is not yet available.

References

Abraham, A., Thybusch, K., Pieritz, K., & Hermann, C. (2014). Gender differences in creative thinking: Behavioral and fMRI findings. Brain Imaging and Behavior, 8(1), 39–51. https://doi.org/10.1007/s11682-013-9241-4 DOI: https://doi.org/10.1007/s11682-013-9241-4

Abubakar, A. M., Elrehail, H., Alatailat, M. A., & Elçi, A. (2019). Knowledge management, decision-making style and organizational performance. Journal of Innovation and Knowledge, 4(2), 104–114. https://doi.org/10.1016/j.jik.2017.07.003 DOI: https://doi.org/10.1016/j.jik.2017.07.003

Atanasova, S., Robin, N., & Brovelli, D. (2023). Genderkompetenz messen – Erfassung der situationsbezogenen Fähigkeiten von Lehrpersonen in Bezug auf genderrelevante Aspekte im Physikunterricht. Unterrichtswiss, 51, 423–453. https://doi.org/10.1007/s42010-023-00169-y DOI: https://doi.org/10.1007/s42010-023-00169-y

Atanasova, S., Robin, N., Brovelli, D., & Robin, N. (2024). Interest, learning opportunities and teaching experience as predictors of professional vision in gender-sensitive physics education. International Journal of Science Education, 0693, 1–23. https://doi.org/10.1080/09500693.2024.2406528 DOI: https://doi.org/10.1080/09500693.2024.2406528

Barth, J. M., Masters, S. L., & Parker, J. G. (2022). Gender stereotypes and belonging across high school girls’ social groups: beyond the STEM classroom. Social Psychology of Education, 25(1), 275–292. https://doi.org/10.1007/s11218-021-09683-2 DOI: https://doi.org/10.1007/s11218-021-09683-2

Bavol’ár, J., & Orosová, O. (2015). Decision-making styles and their associations with decision-making competencies and mental health. Judgment and Decision Making, 10(1), 115–122. DOI: https://doi.org/10.1017/S1930297500003223

Bezen, S., & Derman, İ. (2025). Unveiling global trends in gender equality research within physics education. Social Sciences & Humanities Open Journal, 11(101430), 1–13. https://doi.org/10.1016/j.ssaho.2025.101430 DOI: https://doi.org/10.1016/j.ssaho.2025.101430

Boone, W. J., Yale, M. S., & Staver, J. R. (2014). Rasch analysis in the human sciences. Springer. https://doi.org/10.1007/978-94-007-6857-4 DOI: https://doi.org/10.1007/978-94-007-6857-4

Buenestado-Fernández, M., Ibarra-Vazquez, G., Patiño, A., & Ramírez-Montoya, M. S. (2024). Stories about gender inequalities and influence factors: a science club case study. International Journal of Science Education, 46(5), 403–420. https://doi.org/10.1080/09500693.2023.2235456 DOI: https://doi.org/10.1080/09500693.2023.2235456

Burde, J.-P., Weatherby, T. S., & Wilhelm, T. (2022). Putting potential at the core of teaching electric circuits. The Physics Teacher, 60(5), 340–343. https://doi.org/10.1119/5.0046298 DOI: https://doi.org/10.1119/5.0046298

Burde, J.-P., & Wilhelm, T. (2020). Teaching electric circuits with a focus on potential differences. Physical Review Physics Education Research, 16(2), 20153. https://doi.org/10.1103/PhysRevPhysEducRes.16.020153 DOI: https://doi.org/10.1103/PhysRevPhysEducRes.16.020153

Burkholder, E., Hwang, L., Sattely, E., & Holmes, N. (2021). Supporting decision-making in upper-level chemical engineering laboratories. Education for Chemical Engineers, 35, 69–80. https://doi.org/10.1016/j.ece.2021.01.002 DOI: https://doi.org/10.1016/j.ece.2021.01.002

Byrne, K. A., Peters, C., Willis, H. C., Phan, D., Cornwall, A., & Worthy, D. A. (2020). Acute stress enhances tolerance of uncertainty during decision-making. Cognition, 205(July), 104448. https://doi.org/10.1016/j.cognition.2020.104448 DOI: https://doi.org/10.1016/j.cognition.2020.104448

Cheryan, S., Lombard, E. J., Hailu, F., Pham, L. N. H., & Weltzien, K. (2025). Global patterns of gender disparities in STEM and explanations for their persistence. Nature Reviews Psychology, 4(1), 6–19. https://doi.org/10.1038/s44159-024-00380-3 DOI: https://doi.org/10.1038/s44159-024-00380-3

Chin, H., Chew, C. M., Yew, W. T., & Musa, M. (2022). Validating the cognitive diagnostic assessment and assessing students’ mastery of ‘parallel and perpendicular lines’ using the Rasch model. Participatory Educational Research (PER), 9(6), 436–452. https://doi.org/https://doi.org/10.17275/per.22.147.9.6 DOI: https://doi.org/10.17275/per.22.147.9.6

Clarke, S., Turnbull, B., & Graham, M. (2024). Women’s support-seeking for reproductive decision-making in Australia: rationales and socio-demographic contexts. Journal of Gender Studies, 00(00), 1–15. https://doi.org/10.1080/09589236.2024.2407489 DOI: https://doi.org/10.1080/09589236.2024.2407489

Condron, C., Power, M., Mathew, M., Lucey, S. M., Rcsed, M., Rcsi, F. D. S., & Sim, R. (2023). Gender Equality Training for Students in Higher Education : Protocol for a Scoping Review Corresponding Author : JMIR Res Protoc, 12(e44584), 1–8. https://doi.org/10.2196/44584 DOI: https://doi.org/10.2196/44584

Erbas, S. D., Sendur, E. G., & Yilmaz, A. A. (2025). The influence of 21st-century skills on clinical decision-making in nursing students : a cross-sectional study. Teaching and Learning in Nursing, 20(2), e464–e469. https://doi.org/https://doi.org/10.1016/j.teln.2024.12.011 DOI: https://doi.org/10.1016/j.teln.2024.12.011

Eren, E. (2022). Talking science and feminism. Journal of Gender Studies, 31(8), 911–927. https://doi.org/10.1080/09589236.2022.2091527 DOI: https://doi.org/10.1080/09589236.2022.2091527

Erol, S., Jäger, A., Hold, P., Ott, K., & Sihn, W. (2016). Tangible Industry 4.0: A Scenario-Based Approach to Learning for the Future of Production. Procedia CIRP, 54, 13–18. https://doi.org/10.1016/j.procir.2016.03.162 DOI: https://doi.org/10.1016/j.procir.2016.03.162

Gao, Q., Tong, M., Sun, J., Zhang, C., Huang, Y., & Zhang, S. (2025). A Study of Process-Oriented Guided Inquiry Learning (POGIL) in the Blended Synchronous Science Classroom. Journal of Science Education and Technology, 34(1), 103–121. https://doi.org/10.1007/s10956-024-10155-3 DOI: https://doi.org/10.1007/s10956-024-10155-3

Garg, H., Sun, Y., & Liu, X. (2023). Dual hesitant fuzzy Correlation coefficient-based decision-making algorithm and its applications to Engineering Cost Management problems. Engineering Applications of Artificial Intelligence, 126, 107170. https://doi.org/https://doi.org/10.1016/j.engappai.2023.107170 DOI: https://doi.org/10.1016/j.engappai.2023.107170

Garrecht, C., Eckhardt, M., Höffler, T. N., & Harms, U. (2020). Fostering students ’ socioscientific decision- making : exploring the effectiveness of an environmental science competition. Disciplinary and Interdisciplinary Science Education Research, 2(5), 1–16. https://doi.org/https://doi.org/10.1186/s43031-020-00022-7 DOI: https://doi.org/10.1186/s43031-020-00022-7

Goosen, R., & Steenkamp, G. (2023). Activating accounting students’ decision-making skills through a reflective self-assessment workshop on learning styles. International Journal of Management Education, 21(3), 100858. https://doi.org/10.1016/j.ijme.2023.100858 DOI: https://doi.org/10.1016/j.ijme.2023.100858

Gresch, H., Hasselhorn, M., & Bögeholz, S. (2017). Enhancing Decision-Making in STSE Education by Inducing Reflection and Self-Regulated Learning. Research in Science Education, 47(1), 95–118. https://doi.org/10.1007/s11165-015-9491-9 DOI: https://doi.org/10.1007/s11165-015-9491-9

Guo, Y., & Li, X. (2024). Heliyon regional inequality in China ’ s educational development : An urban-rural comparison. Heliyon, 10(4), e26249. https://doi.org/10.1016/j.heliyon.2024.e26249 DOI: https://doi.org/10.1016/j.heliyon.2024.e26249

Holmes, N. G., Keep, B., & Wieman, C. E. (2020). Developing scientific decision making by structuring and supporting student agency. Physical Review Physics Education Research, 16(1), 10109. https://doi.org/10.1103/PhysRevPhysEducRes.16.010109 DOI: https://doi.org/10.1103/PhysRevPhysEducRes.16.010109

Jeong, S., Rague, J., Litson, K., Feldon, D. F., Lawler, M. J., & Plummer, K. (2024). Effects of decision-based learning on student performance in introductory physics: The mediating roles of cognitive load and self-testing. Education and Information Technologies, 1–7. https://doi.org/10.1007/s10639-024-12962-y DOI: https://doi.org/10.1007/s10639-024-12962-y

Kassiavera, S., Suparmi, A., & Cari, C. (2024). Application of Rasch model in two-tier test for assessing critical thinking in physics education. Journal of Baltic Science Education, 23(6), 1227–1242. https://doi.org/https://doi.org/10.33225/jbse/24.23.1227 DOI: https://doi.org/10.33225/jbse/24.23.1227

Kataeva, Z., Durrani, N., & Rakhimzhanova, Aray Shakirova, S. (2025). Higher education leadership agency in mainstreaming gender equality : Insights from universities in Kazakhstan. Gender, Work & Organization, 32, 1470–1481. https://doi.org/https://doi.org/10.1111/gwao.13239 DOI: https://doi.org/10.1111/gwao.13239

Khazen, M., Asli, S., Hofstein, A., & Hugerat, M. (2025). Effect of an educational initiative for sustainability on pre-service teachers’ ethical decision-making skills, motivation to learn science , and learning atmosphere in the classroom. Sustainability (Switzerland), 17(992), 1–26. https://doi.org/https://doi.org/10.3390/su17030992 DOI: https://doi.org/10.3390/su17030992

Khishfe, R. (2012). Nature of Science and Decision-Making. International Journal of Science Education, 34(1), 67–100. https://doi.org/10.1080/09500693.2011.559490 DOI: https://doi.org/10.1080/09500693.2011.559490

Kinskey, M., & Zeidler, D. (2024). Elementary preservice teachers’ pedagogical decisions about socioscientific issues instruction. Journal of Research in Science Teaching, 1–35. https://doi.org/https://doi.org/10.1002/tea.21932 DOI: https://doi.org/10.1002/tea.21932

Krishnamurthy, K., Selvaraj, N., Gupta, P., Cyriac, B., Dhurairaj, P., Abdullah, A., Krishnapillai, A., Lugova, H., Haque, M., Xie, S., & Ang, E.-T. (2022). Benefits of gamification in medical education. Clinical Anatomy, 35(6), 795–807. https://doi.org/https://doi.org/10.1002/ca.23916 DOI: https://doi.org/10.1002/ca.23916

Laka, M., Carter, D., Milazzo, A., & Merlin, T. (2022). Challenges and opportunities in implementing clinical decision support systems (CDSS) at scale: Interviews with Australian policymakers. Health Policy and Technology, 11(3). https://doi.org/10.1016/j.hlpt.2022.100652 DOI: https://doi.org/10.1016/j.hlpt.2022.100652

Laliyo, L. A. R., Hamdi, S., Pikoli, M., Abdullah, R., & Panigoro, C. (2021). Implementation of four-tier multiple-choice instruments based on the partial credit model in evaluating students’ learning progress. European Journal of Educational Research, 10(2), 825–840. https://doi.org/10.12973/EU-JER.10.2.825 DOI: https://doi.org/10.12973/eu-jer.10.2.825

Lauri, S., & Salanterä, S. (2002). Developing an instrument to measure and describe clinical decision making in different nursing fields. Journal of Professional Nursing, 18(2), 93–100. https://doi.org/https://doi.org/10.1053/jpnu.2002.32344 DOI: https://doi.org/10.1053/jpnu.2002.32344

León, J. J., Sánchez-kuhn, A., Fernández-martín, P., Páez-pérez, M. A., Thomas, C., Datta, A., Sánchez-santed, F., & Flores, P. (2020). Transcranial direct current stimulation improves risky decision making in women but not in men : A sham-controlled study. 382(January). https://doi.org/10.1016/j.bbr.2020.112485 DOI: https://doi.org/10.1016/j.bbr.2020.112485

Linacre, J. M. (2002). Understanding Rasch measurement: Optimizing Rating Scale Category Effectiveness. Journal of Applied Measurement, 3(1), 85–106.

Linacre, J. M. (2020). A User’s guide to Winsteps-ministep: Rasch-model computer programs. Program Manual 4.5.1. In winsteps.com.

Lozano, L. M., Megías, A., Catena, A., Perales, J. C., Baltruschat, S., & Cándido, A. (2017). Spanish validation of the Domain-Speci fi c Risk-Taking (DOSPERT-30) Scale. Psicohotema, 29(1), 111–118. https://doi.org/10.7334/psicothema2016.132 DOI: https://doi.org/10.7334/psicothema2016.132

Mettas, A. (2011). The development of decision-making skills. Eurasia Journal of Mathematics, Science and Technology Education, 7(1), 63–73. https://doi.org/10.12973/ejmste/75180 DOI: https://doi.org/10.12973/ejmste/75180

Montgomery, B. J., Price, A. M., & Wieman, C. E. (2024). Characterizing decision-making opportunities in undergraduate physics coursework. Physical Review Physics Education Research, 20(2), 20103. https://doi.org/10.1103/PhysRevPhysEducRes.20.020103 DOI: https://doi.org/10.1103/PhysRevPhysEducRes.20.020103

Msambwa, M. M., Daniel, K., Lianyu, C., & Antony, F. (2024). A Systematic Review Using Feminist Perspectives on the Factors Affecting Girls’ Participation in STEM Subjects. In Science and Education (Issue 0123456789). Springer Netherlands. https://doi.org/10.1007/s11191-024-00524-0 DOI: https://doi.org/10.1007/s11191-024-00524-0

Nasmilah, Keary, A., Sahraeny, S., Bonar, G., Adi Suputra, W., & Karlina, Y. (2024). Rural South Sulawesi mothers’ emotional capital: supporting primary school children’s remote learning during COVID-19. Journal of Gender Studies, 00(00), 1–14. https://doi.org/10.1080/09589236.2024.2387199 DOI: https://doi.org/10.1080/09589236.2024.2387199

Novianawati, N., & Nahadi. (2015). Analysis of students’ decision making to solve science reasoning test of trends in international mathematics and science study (Timss). Jurnal Pendidikan IPA Indonesia, 4(1), 1–6. https://doi.org/10.15294/jpii.v4i1.3491

Nurussaniah, N., Setyosari, P., Kuswandi, D., & Ulfa, S. (2025). Psychometric validation of an analytical skills test in physics using the Rasch model. Journal of Baltic Science Education, 24(3), 522–537. https://doi.org/https://doi.org/10.33225/jbse/25.24.522 DOI: https://doi.org/10.33225/jbse/25.24.522

Olmstead, A., Gutmann, B., Ochoa-Madrid, E., Vasquez, A., Pike, C., & Barringer, D. (2023). How Can We Design Instruction to Support Student Reasoning About Physicists’ Ethical Responsibilities in Society? The Physics Teacher, 61(5), 343–350. https://doi.org/10.1119/5.0087490 DOI: https://doi.org/10.1119/5.0087490

Orhan, A., & Ataman, O. (2024). Investigating the predictive role of reflective thinking and decision making on creative thinking dispositions. Reflective Practice, 25(2), 1–16. DOI: https://doi.org/10.1080/14623943.2024.2305921

Pietrocola, M., Rodriguea, E., Bercot, F., & Schnorr, S. (2021). Science, society, and science education. Science & Education, 30(3), 209–232. https://doi.org/10.1002/sce.3730640312 DOI: https://doi.org/10.1007/s11191-020-00176-w

Pilatti, A., Lozano, O. M., & Cyders, M. A. (2015). Psychometric properties of the spanish version of the UPPS-P impulsive behavior scale: A rasch rating scale analysis and confirmatory factor analysis. Psychological Assessment, 27(4), e10–e21. https://doi.org/10.1037/pas0000124 DOI: https://doi.org/10.1037/pas0000124

Razaghpoor, A., Taheri-Ezbarami, Z., Jafaraghaee, F., Maroufizadeh, S., & Falakdami, A. (2024). The effect of serious game and problem-based learning on nursing students’ knowledge and clinical decision-making skill regarding the application of transfusion medicine in pediatric nursing. Journal of Pediatric Nursing, 76, e1–e8. https://doi.org/https://doi.org/10.1016/j.pedn.2024.01.010 DOI: https://doi.org/10.1016/j.pedn.2024.01.010

Rosa, R., & Clavero, S. (2022). Gender equality in higher education and research. Journal of Gender Studies, 31(1), 1–7. https://doi.org/10.1080/09589236.2022.2007446 DOI: https://doi.org/10.1080/09589236.2022.2007446

Sadeghi R., K., Ojha, D., Kaur, P., Mahto, R. V., & Dhir, A. (2024). Explainable artificial intelligence and agile decision-making in supply chain cyber resilience. Decision Support Systems, 180(June 2023), 114194. https://doi.org/10.1016/j.dss.2024.114194 DOI: https://doi.org/10.1016/j.dss.2024.114194

Sakschewski, M., Eggert, S., Schneider, S., & Bögeholz, S. (2014). Students’ Socioscientific Reasoning and Decision-making on Energy-related Issues-Development of a measurement instrument. International Journal of Science Education, 36(14), 2291–2313. https://doi.org/10.1080/09500693.2014.920550 DOI: https://doi.org/10.1080/09500693.2014.920550

Smoliński, P. R., & Brycz, H. (2024). Individual differences in inaccurate versus accurate economic judgment and decision making. Metacognitive approach. Personality and Individual Differences, 219, 112500. https://doi.org/https://doi.org/10.1016/j.paid.2023.112500 DOI: https://doi.org/10.1016/j.paid.2023.112500

Soeharto, S., Martono, M., Hairida, H., Akhmetova, A., Arifiyanti, F., Benő, C., & Charalambos, C. (2024). The metacognitive awareness of reading strategy among pre-service primary teachers and the possibility of rating improvement using Rasch analysis. Studies in Educational Evaluation, 80(February 2023), 1–12. https://doi.org/10.1016/j.stueduc.2023.101319 DOI: https://doi.org/10.1016/j.stueduc.2023.101319

Soeharto, S., & Csapó, B. (2022). Assessing Indonesian student inductive reasoning: Rasch analysis. Thinking Skills and Creativity, 46(November 2021). https://doi.org/10.1016/j.tsc.2022.101132 DOI: https://doi.org/10.1016/j.tsc.2022.101132

Sokol, R. G., Slawson, D. C., & Shaughnessy, A. F. (2019). Teaching evidence-based medicine application: transformative concepts of information mastery that foster evidence-informed decision-making. BMJ Evidence-Based Medicine, 24(4), 149–154. https://doi.org/10.1136/bmjebm-2018-111142 DOI: https://doi.org/10.1136/bmjebm-2018-111142

Spatz, V., Tampe, J., & Slezak, C. (2019). Fostering students’ decision-making competencies. The Physics Teacher, 57(8), 533-535. https://doi.org/10.1119/1.5131118 DOI: https://doi.org/10.1119/1.5131118

Suwita, S., Saputro, S., & Sajidan, S. (2023). Assessing lower-secondary school students’ critical thinking skills in photosynthesis: A Rasch model approach. Journal of Baltic Science Education, 23(6), 1278–1290. https://doi.org/https://dx.doi.org/10.33225/jbse/24.23.1278 DOI: https://doi.org/10.33225/jbse/24.23.1278

Taber, K. S. (2018). The Use of Cronbach’s Alpha When Developing and Reporting Research Instruments in Science Education. Research in Science Education, 48(6), 1273–1296. https://doi.org/10.1007/s11165-016-9602-2 DOI: https://doi.org/10.1007/s11165-016-9602-2

Thi, H., Le, T., Thanh, L., Thuy, H. T., & Province, T. H. (2022). Student decision-making processes as evaluated by students, administrators, and lecturers. International Journal of Education and Practice, 10(4), 371–380. https://doi.org/10.18488/61.v10i4.3221 DOI: https://doi.org/10.18488/61.v10i4.3221

Tutticci, N., & Huss, N. M. (2025). An analysis of sustainable decision-making using clinical reasoning. Teaching and Learning in Nursing, 20(2), 131–136. https://doi.org/10.1016/j.teln.2024.11.013 DOI: https://doi.org/10.1016/j.teln.2024.11.013

Torres, D., Pimentel, C., & Matias, J. C. O. (2023). Characterization of Tasks and Skills of Workers, Middle and Top Managers in the Industry 4.0 Context. Sustainability (Switzerland), 15(8), 1–30. https://doi.org/10.3390/su15086981 DOI: https://doi.org/10.3390/su15086981

Ubaidillah, M., Marwoto, P., Wiyanto, Rusilowati, A., Subali, B., Mindyarto, B. N., & Isnaeni, W. (2022). Development of Habits of Mind Instruments in the Context of Basic Physics Practicum: EFA and Rasch Model. Educational, Cultural, and Psychological Studies, 23(December), 23–49. DOI: https://doi.org/10.7358/ecps-2022-026-ubai

Vázquez-Calatayud, M., García-García, R., Regaira-Martínez, E., & Gómez-Urquiza, J. (2024). Real-world and game-based learning to enhance decision-making. Nurse Education Today, 140(June). https://doi.org/10.1016/j.nedt.2024.106276 DOI: https://doi.org/10.1016/j.nedt.2024.106276

Villanueva-Moya, L., & Expósito, F. (2021). Gender differences in decision-making : The effects of gender stereotype threat moderated by sensitivity to punishment and fear of negative evaluation. March 2020, 1–12. https://doi.org/10.1002/bdm.2239 DOI: https://doi.org/10.1002/bdm.2239

Wolcott, S. K., & Sargent, M. J. (2021). Critical thinking in accounting education: Status and call to action. Journal of Accounting Education, 56, 1–19. https://doi.org/https://doi.org/10.1016/j.jaccedu.2021.100731 DOI: https://doi.org/10.1016/j.jaccedu.2021.100731

Yang, P., Li, S., Qin, S., Wang, L., Hu, M., & Yang, F. (2024). Smart grid enterprise decision-making and economic benefit analysis based on LSTM-GAN and edge computing algorithm. Alexandria Engineering Journal, 104(June), 314–327. https://doi.org/10.1016/j.aej.2024.06.028 DOI: https://doi.org/10.1016/j.aej.2024.06.028

Zakwandi, R., Istiyono, E., & Dwandaru, W. S. B. (2024). A two-tier computerized adaptive test to measure student computational thinking skills. Education and Information Technologies, 29(7), 8579–8608. https://doi.org/10.1007/s10639-023-12093-w DOI: https://doi.org/10.1007/s10639-023-12093-w

Zhang, W. X., & Hsu, Y. S. (2021). The interplay of students’ regulation learning and their collective decision-making performance in a SSI context. International Journal of Science Education, 43(11), 1746–1778. https://doi.org/10.1080/09500693.2021.1933250 DOI: https://doi.org/10.1080/09500693.2021.1933250

Zoechling, S., Hopf, M., & Woithe, J. (2022). Students’ interest in particle physics: conceptualisation, instrument development, and evaluation using Rasch theory and analysis and analysis. International Journal of Science Education, 44(15), 2353–2380. https://doi.org/10.1080/09500693.2022.2122897 DOI: https://doi.org/10.1080/09500693.2022.2122897

Downloads

Published

2025-08-26

How to Cite

Subali, B., Ubaidillah, M., Marwoto, P., Wiyanto, W., & Hartono, H. (2025). Assessing Decision-Making Skills in Electricity: Rasch Analysis. International Journal of Cognitive Research in Science, Engineering and Education (IJCRSEE), 13(2), 273–287. https://doi.org/10.23947/2334-8496-2025-13-2-273-287

Metrics

Plaudit

Received 2025-04-09
Accepted 2025-08-05
Published 2025-08-26

Most read articles by the same author(s)