A Hybrid SWARA-NWA Framework for Evaluating AI-Based Image Recognition Algorithms in Educational Technology Applications
DOI:
https://doi.org/10.23947/2334-8496-2025-13-3-719-735Keywords:
Educational technology, Artificial intelligence, Computer vision, Multi-criteria decision making (MCDM) and Algorithm evaluationAbstract
Artificial Intelligence (AI) and computer vision technologies are increasingly integrated into educational environments through intelligent tutoring systems, gesture-based learning, facial expression analysis, and automated evaluation tools. However, selecting the most appropriate image recognition algorithms for educational applications remains a challenge due to varying requirements regarding speed, accuracy, hardware compatibility, and usability in dynamic classroom conditions.This paper proposes a hybrid multi-criteria decision-making (MCDM) model based on the Step-wise Weight Assessment Ratio Analysis (SWARA) and Net Worth Analysis (NWA) methods to evaluate and rank nine widely used AI-based visual recognition algorithms. The evaluation is conducted using five education-relevant criteria: processing speed, recognition accuracy, robustness to classroom noise, compatibility with low-end devices, and energy efficiency. Expert assessments from the field of educational technology were used to derive weight coefficients and evaluate algorithm performance.The results show that Fast R-CNN achieved the highest overall score (1.141), followed by U-Net (1.077) and DeepLab (1.062), indicating their suitability for real-time and resource-constrained EdTech environments. Algorithms such as MobileNet (1.057) and YOLO (1.037) also demonstrated balanced performance, making them viable for mobile or moderately demanding educational scenarios. The proposed model offers a structured and transparent decision-support framework that can assist researchers and practitioners in selecting optimal AI algorithms for diverse educational applications.
Downloads
References
Adžić, S., Savić Tot, T., Vuković, V., Radanov, P., & Avakumović, J. (2024). Understanding Student Attitudes toward GenAI Tools: A Comparative Study of Serbia and Austria. International Journal of Cognitive Research in Science, Engineering and Education (IJCRSEE), 12(2). https://doi.org/10.23947/2334-8496-2024-12-3-583-611 DOI: https://doi.org/10.23947/2334-8496-2024-12-3-583-611
Alshamsi, A. M., El-Kassabi, H., Serhani, M. A., & Bouhaddioui, C. (2023). A multi-criteria decision-making (MCDM) approach for data-driven distance learning recommendations. Education and Information Technologies, 28(8), 10421–10458. https://doi.org/10.1007/s10639-023-11589-9 DOI: https://doi.org/10.1007/s10639-023-11589-9
Behzadian, M., Otaghsara, S. K., Yazdani, M., & Ignatius, J. (2012). A state-of the-art survey of TOPSIS applications. Expert Systems with Applications, 39(17), 13051–13069. https://doi.org/10.1016/j.eswa.2012.05.056 DOI: https://doi.org/10.1016/j.eswa.2012.05.056
Brans, J. P., & Mareschal, B. (2005). PROMETHEE methods. U J. Figueira, S. Greco, & M. Ehrgott (Ur.), Multiple Criteria Decision Analysis: State of the Art Surveys, 163–195. Springer. DOI: https://doi.org/10.1007/0-387-23081-5_5
Buenaño-Fernandez, D., Villegas-CH, W., & Luján-Mora, S. (2019). The use of tools of data mining to decision making in engineering education – A systematic mapping study. Computer Applications in Engineering Education, 27(3), 744–758. https://doi.org/10.1002/cae.22100 DOI: https://doi.org/10.1002/cae.22100
Chen, L., Chen, P., & Lin, Z. (2020). Artificial intelligence in education: A review. IEEE Access, 8, 75264–75278. https://doi.org/10.1109/ACCESS.2020.2988510 DOI: https://doi.org/10.1109/ACCESS.2020.2988510
Chen, Z., & Luo, S. (2023). Evaluate teaching quality of physical education using a hybrid multi-criteria decision-making framework. PLOS ONE, 18(2), e0280845. https://doi.org/10.1371/journal.pone.0280845 DOI: https://doi.org/10.1371/journal.pone.0280845
Colchester, K., Hagras, H., Alghazzawi, D., & Aldabbagh, G. (2017). A survey of artificial intelligence techniques employed for adaptive educational systems within e-learning platforms. Journal of Artificial Intelligence and Soft Computing Research, 7(1), 47–64. https://doi.org/10.1515/jaiscr-2017-0004 DOI: https://doi.org/10.1515/jaiscr-2017-0004
Dimitriadou, E., & Lanitis, A. (2023). A critical evaluation, challenges, and future perspectives of using artificial intelligence and emerging technologies in smart classrooms. Smart Learning Environments, 10(1), 12. https://doi.org/10.1186/s40561-023-00231-3 DOI: https://doi.org/10.1186/s40561-023-00231-3
Dym, C. L. (2004). Design, systems, and engineering education. International Journal of Engineering Education, 20(3), 305–312.
Hsu, C., & Sandford, B. A. (2007). The Delphi Technique: Making Sense of Consensus. Practical Assessment, Research, and Evaluation, 12(1), 10. https://doi.org/10.7275/pdz9-th90
Ibrahim, F., Susanto, H., Haghi, P. K., & Setiana, D. (2020). Shifting paradigm of education landscape in time of the COVID-19 pandemic: Revealing of a digital education management information system. Applied System Innovation, 3(4), 49. https://doi.org/10.3390/asi3040049 DOI: https://doi.org/10.3390/asi3040049
Kaddouri, M., Mhamdi, K., Chniete, I., Marhraoui, M., Khaldi, M., & Jmad, S. (2025). Adopting AI in education: Technical challenges and ethical constraints. U Fostering Inclusive Education With AI and Emerging Technologies, 25–72. IGI Global. https://doi.org/10.4018/979-8-3693-7255-5.ch002 DOI: https://doi.org/10.4018/979-8-3693-7255-5.ch002
Kayal, A. (2024). Transformative pedagogy: A comprehensive framework for AI integration in education. U Explainable AI for Education: Recent Trends and Challenges, 247–270. Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-72410-7_14 DOI: https://doi.org/10.1007/978-3-031-72410-7_14
Keršuliene, V., Zavadskas, E. K., & Turskis, Z. (2010). Selection of rational dispute resolution method by applying new step-wise weight assessment ratio analysis (Swara). Journal of Business Economics and Management, 11(2), 243–258. https://doi.org/10.3846/jbem.2010.12 DOI: https://doi.org/10.3846/jbem.2010.12
Keshavarz-Ghorabaee, M., Amiri, M., Zavadskas, E. K., Turskis, Z., & Antucheviciene, J. (2018). An Extended Step-Wise Weight Assessment Ratio Analysis with Symmetric Interval Type-2 Fuzzy Sets for Determining the Subjective Weights of Criteria in MCDM Problems. Symmetry, 10(4), 91. https://doi.org/10.3390/sym10040091 DOI: https://doi.org/10.3390/sym10040091
Krstev, A., Cebova, I., & Krstev, D. (2024). Research on the implementation of a system for monitoring processes in educational institutions. IJSDR, 9(11). https://eprints.ugd.edu.mk/35189/
Li, L., Chen, C. P., Wang, L., Liang, K., & Bao, W. (2023). Exploring artificial intelligence in smart education: Real-time classroom behavior analysis with embedded devices. Sustainability, 15(10), 7940. https://doi.org/10.3390/su15107940 DOI: https://doi.org/10.3390/su15107940
Mahmoodi, A., Eshaghi, M., & Laliberte, J. (2025). Designing educational strategies for experiential learning: An AHP-fuzzy logic case study at Carleton University. Journal of Open Innovation: Technology, Market, and Complexity, 11(3), 100576. https://doi.org/10.1016/j.joitmc.2025.100576 DOI: https://doi.org/10.1016/j.joitmc.2025.100576
Malik, D. A. A., Yusof, Y., & Na’im Ku Khalif, K. M. (2021). A view of MCDM application in education. Journal of Physics: Conference Series, 1988(1), 012063. https://doi.org/10.1088/1742-6596/1988/1/012063 DOI: https://doi.org/10.1088/1742-6596/1988/1/012063
Marinović, M., Viduka, D., Lavrnić, I., Stojčetović, B., Skulić, A., Bašić, A., Balaban, P., & Rastovac, D. (2025). An Intelligent Multi-Criteria Decision Approach for Selecting the Optimal Operating System for Educational Environments. Electronics, 14(3), 514. https://doi.org/10.3390/electronics14030514 DOI: https://doi.org/10.3390/electronics14030514
Massam, B. H. (1988). Multi-criteria decision making (MCDM) techniques in planning. Progress in Planning, 30, 1–84. https://doi.org/10.1016/0305-9006(88)90012-8 DOI: https://doi.org/10.1016/0305-9006(88)90012-8
Milićević, V., Koceva Lazarova, L., & Jordovic Pavlovic, M. (2024). The Application of Artificial Intelligence in Education – The Current State and Trends. International Journal of Cognitive Research in Science, Engineering and Education (IJCRSEE), 12(2), 259–272. https://doi.org/10.23947/2334-8496-2024-12-2-259-272 DOI: https://doi.org/10.23947/2334-8496-2024-12-2-259-272
Nguyen, P. H. (2024). A data-driven MCDM approach-based spherical fuzzy sets for evaluating global augmented reality providers in education. IEEE Access, 13, 6102–6119. https://doi.org/10.1109/ACCESS.2024.3361320 DOI: https://doi.org/10.1109/ACCESS.2024.3361320
Pamučar, D., & Ćirović, G. (2015). The selection of transport and handling resources in logistics centers using Multi-Attributive Border Approximation area Comparison (MABAC). Expert systems with applications, 42(6), 3016-3028. https://doi.org/10.1016/j.eswa.2014.11.057 DOI: https://doi.org/10.1016/j.eswa.2014.11.057
Popović, S., & Đukić-Popović, S. (2021). The importance of introducing internal audit in pre-university education institutions [Značaj uvođenja interne revizije u ustanove douniverzitetskog obrazovanja]. Revizor, 24(94), 37–43. https://doi.org/10.5937/Rev2194037P
Popović, S. Đukić Popović, S., & Jeremić, N. (2022). Učesnici nastavnog procesa i interna revizija – istraživanje o informisanosti učesnika nastavnog procesa o internoj reviziji [Awareness of the participants of the teaching process about internal audit]. Revizor, 25(100), 41–48. https://doi.org/10.5937/Rev2194037P DOI: https://doi.org/10.5937/rev2194037P
Rane, N., Choudhary, S., & Rane, J. (2023). Education 4.0 and 5.0: Integrating artificial intelligence (AI) for personalized and adaptive learning. Available at SSRN 4638365. DOI: https://doi.org/10.2139/ssrn.4638365
Sahoo, S. K., & Goswami, S. S. (2023). A Comprehensive Review of Multiple Criteria Decision-Making (MCDM) Methods: Advancements, Applications, and Future Directions. Decision Making Advances, 1(1), 25–48. https://doi.org/10.31181/dma1120237 DOI: https://doi.org/10.31181/dma1120237
Sampson, C. J., Arnold, R., Bryan, S., Clarke, P., Ekins, S., Hatswell, A., ... & Wrightson, T. (2019). Transparency in decision modelling: what, why, who and how?. Pharmacoeconomics, 37(11), 1355–1369. https://doi.org/10.1007/s40273-019-00819-z DOI: https://doi.org/10.1007/s40273-019-00819-z
Spalević, Žaklina, Milosavljević, S., Dubljanin, D., Popović, G., & Ilić, M. (2024). The Role of Artificial Intelligence in Judicial Systems. International Journal of Cognitive Research in Science, Engineering and Education (IJCRSEE), 12(3), 561–569. https://doi.org/10.23947/2334-8496-2024-12-3-561-569 DOI: https://doi.org/10.23947/2334-8496-2024-12-3-561-569
Tariq, R., Mohammed, A., Alshibani, A., & Ramírez-Montoya, M. S. (2024). Complex artificial intelligence models for energy sustainability in educational buildings. Scientific Reports, 14, 15020. https://doi.org/10.1038/s41598-024-65727-5 DOI: https://doi.org/10.1038/s41598-024-65727-5
Toan, P. N., Dang, T.-T., & Hong, L. T. T. (2021). E-Learning Platform Assessment and Selection Using Two-Stage MCDM Approach with Grey Theory: A Case Study in Vietnam. Mathematics, 9(23), 3136. https://doi.org/10.3390/math9233136 DOI: https://doi.org/10.3390/math9233136
Troussas, C., Krouska, A., Mylonas, P., & Sgouropoulou, C. (2025). Personalized Instructional Strategy Adaptation Using TOPSIS: A MCDM Approach for Adaptive Learning Systems. Information, 16(5), 409. https://doi.org/10.3390/info16050409 DOI: https://doi.org/10.3390/info16050409
Tsankov, N., & Levunlieva, M. (2024). Designing Digital Multimodal Resources for the Kindergarten: From Intuition to Awareness. International Journal of Cognitive Research in Science, Engineering and Education (IJCRSEE), 12(3), 657–667. https://doi.org/10.23947/2334-8496-2024-12-3-657-667 DOI: https://doi.org/10.23947/2334-8496-2024-12-3-657-667
Vaidya, O. S., & Kumar, S. (2006). Analytic hierarchy process: An overview of applications. European Journal of Operational Research, 169(1), 1–29. https://doi.org/10.1016/j.ejor.2004.04.028 DOI: https://doi.org/10.1016/j.ejor.2004.04.028
Viennet, R., & Pont, B. (2017). Education policy implementation: A literature review and proposed framework. OECD Education Working Papers, No. 162. https://doi.org/10.1787/fc467a64-en DOI: https://doi.org/10.1787/fc467a64-en
Zabulis, X., Baltzakis, H., & Argyros, A. A. (2009). Vision-Based Hand Gesture Recognition for Human-Computer Interaction. The universal access handbook, 34, 30. https://doi.org/10.1201/9781420064995-c34. DOI: https://doi.org/10.1201/9781420064995-c34
Zangemeister, C. (1976). Nutzenwertanalyse in der Systemtechnik: Eine Methodik zur multidimensionalen Bewertung und Auswahl von Projektalternativen. München: Carl Hanser Verlag.
Zellner, M., Abbas, A. E., Budescu, D. V., & Galstyan, A. (2021). A survey of human judgement and quantitative forecasting methods. Royal Society Open Science, 8(2), 201187. https://doi.org/10.1098/rsos.201187 DOI: https://doi.org/10.1098/rsos.201187
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2025 Nikola Gligorijević , Dejan VIduka, Sonja Popović, Vojkan Nikolić , Stefan Popović

This work is licensed under a Creative Commons Attribution 4.0 International License.
Plaudit
Accepted 2025-09-30
Published 2025-12-20


