A Hybrid SWARA-NWA Framework for Evaluating AI-Based Image Recognition Algorithms in Educational Technology Applications

Authors

DOI:

https://doi.org/10.23947/2334-8496-2025-13-3-719-735

Keywords:

Educational technology, Artificial intelligence, Computer vision, Multi-criteria decision making (MCDM) and Algorithm evaluation

Abstract

Artificial Intelligence (AI) and computer vision technologies are increasingly integrated into educational environments through intelligent tutoring systems, gesture-based learning, facial expression analysis, and automated evaluation tools. However, selecting the most appropriate image recognition algorithms for educational applications remains a challenge due to varying requirements regarding speed, accuracy, hardware compatibility, and usability in dynamic classroom conditions.This paper proposes a hybrid multi-criteria decision-making (MCDM) model based on the Step-wise Weight Assessment Ratio Analysis (SWARA) and Net Worth Analysis (NWA) methods to evaluate and rank nine widely used AI-based visual recognition algorithms. The evaluation is conducted using five education-relevant criteria: processing speed, recognition accuracy, robustness to classroom noise, compatibility with low-end devices, and energy efficiency. Expert assessments from the field of educational technology were used to derive weight coefficients and evaluate algorithm performance.The results show that Fast R-CNN achieved the highest overall score (1.141), followed by U-Net (1.077) and DeepLab (1.062), indicating their suitability for real-time and resource-constrained EdTech environments. Algorithms such as MobileNet (1.057) and YOLO (1.037) also demonstrated balanced performance, making them viable for mobile or moderately demanding educational scenarios. The proposed model offers a structured and transparent decision-support framework that can assist researchers and practitioners in selecting optimal AI algorithms for diverse educational applications.

Downloads

Download data is not yet available.

References

Adžić, S., Savić Tot, T., Vuković, V., Radanov, P., & Avakumović, J. (2024). Understanding Student Attitudes toward GenAI Tools: A Comparative Study of Serbia and Austria. International Journal of Cognitive Research in Science, Engineering and Education (IJCRSEE), 12(2). https://doi.org/10.23947/2334-8496-2024-12-3-583-611 DOI: https://doi.org/10.23947/2334-8496-2024-12-3-583-611

Alshamsi, A. M., El-Kassabi, H., Serhani, M. A., & Bouhaddioui, C. (2023). A multi-criteria decision-making (MCDM) approach for data-driven distance learning recommendations. Education and Information Technologies, 28(8), 10421–10458. https://doi.org/10.1007/s10639-023-11589-9 DOI: https://doi.org/10.1007/s10639-023-11589-9

Behzadian, M., Otaghsara, S. K., Yazdani, M., & Ignatius, J. (2012). A state-of the-art survey of TOPSIS applications. Expert Systems with Applications, 39(17), 13051–13069. https://doi.org/10.1016/j.eswa.2012.05.056 DOI: https://doi.org/10.1016/j.eswa.2012.05.056

Brans, J. P., & Mareschal, B. (2005). PROMETHEE methods. U J. Figueira, S. Greco, & M. Ehrgott (Ur.), Multiple Criteria Decision Analysis: State of the Art Surveys, 163–195. Springer. DOI: https://doi.org/10.1007/0-387-23081-5_5

Buenaño-Fernandez, D., Villegas-CH, W., & Luján-Mora, S. (2019). The use of tools of data mining to decision making in engineering education – A systematic mapping study. Computer Applications in Engineering Education, 27(3), 744–758. https://doi.org/10.1002/cae.22100 DOI: https://doi.org/10.1002/cae.22100

Chen, L., Chen, P., & Lin, Z. (2020). Artificial intelligence in education: A review. IEEE Access, 8, 75264–75278. https://doi.org/10.1109/ACCESS.2020.2988510 DOI: https://doi.org/10.1109/ACCESS.2020.2988510

Chen, Z., & Luo, S. (2023). Evaluate teaching quality of physical education using a hybrid multi-criteria decision-making framework. PLOS ONE, 18(2), e0280845. https://doi.org/10.1371/journal.pone.0280845 DOI: https://doi.org/10.1371/journal.pone.0280845

Colchester, K., Hagras, H., Alghazzawi, D., & Aldabbagh, G. (2017). A survey of artificial intelligence techniques employed for adaptive educational systems within e-learning platforms. Journal of Artificial Intelligence and Soft Computing Research, 7(1), 47–64. https://doi.org/10.1515/jaiscr-2017-0004 DOI: https://doi.org/10.1515/jaiscr-2017-0004

Dimitriadou, E., & Lanitis, A. (2023). A critical evaluation, challenges, and future perspectives of using artificial intelligence and emerging technologies in smart classrooms. Smart Learning Environments, 10(1), 12. https://doi.org/10.1186/s40561-023-00231-3 DOI: https://doi.org/10.1186/s40561-023-00231-3

Dym, C. L. (2004). Design, systems, and engineering education. International Journal of Engineering Education, 20(3), 305–312.

Hsu, C., & Sandford, B. A. (2007). The Delphi Technique: Making Sense of Consensus. Practical Assessment, Research, and Evaluation, 12(1), 10. https://doi.org/10.7275/pdz9-th90

Ibrahim, F., Susanto, H., Haghi, P. K., & Setiana, D. (2020). Shifting paradigm of education landscape in time of the COVID-19 pandemic: Revealing of a digital education management information system. Applied System Innovation, 3(4), 49. https://doi.org/10.3390/asi3040049 DOI: https://doi.org/10.3390/asi3040049

Kaddouri, M., Mhamdi, K., Chniete, I., Marhraoui, M., Khaldi, M., & Jmad, S. (2025). Adopting AI in education: Technical challenges and ethical constraints. U Fostering Inclusive Education With AI and Emerging Technologies, 25–72. IGI Global. https://doi.org/10.4018/979-8-3693-7255-5.ch002 DOI: https://doi.org/10.4018/979-8-3693-7255-5.ch002

Kayal, A. (2024). Transformative pedagogy: A comprehensive framework for AI integration in education. U Explainable AI for Education: Recent Trends and Challenges, 247–270. Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-72410-7_14 DOI: https://doi.org/10.1007/978-3-031-72410-7_14

Keršuliene, V., Zavadskas, E. K., & Turskis, Z. (2010). Selection of rational dispute resolution method by applying new step-wise weight assessment ratio analysis (Swara). Journal of Business Economics and Management, 11(2), 243–258. https://doi.org/10.3846/jbem.2010.12 DOI: https://doi.org/10.3846/jbem.2010.12

Keshavarz-Ghorabaee, M., Amiri, M., Zavadskas, E. K., Turskis, Z., & Antucheviciene, J. (2018). An Extended Step-Wise Weight Assessment Ratio Analysis with Symmetric Interval Type-2 Fuzzy Sets for Determining the Subjective Weights of Criteria in MCDM Problems. Symmetry, 10(4), 91. https://doi.org/10.3390/sym10040091 DOI: https://doi.org/10.3390/sym10040091

Krstev, A., Cebova, I., & Krstev, D. (2024). Research on the implementation of a system for monitoring processes in educational institutions. IJSDR, 9(11). https://eprints.ugd.edu.mk/35189/

Li, L., Chen, C. P., Wang, L., Liang, K., & Bao, W. (2023). Exploring artificial intelligence in smart education: Real-time classroom behavior analysis with embedded devices. Sustainability, 15(10), 7940. https://doi.org/10.3390/su15107940 DOI: https://doi.org/10.3390/su15107940

Mahmoodi, A., Eshaghi, M., & Laliberte, J. (2025). Designing educational strategies for experiential learning: An AHP-fuzzy logic case study at Carleton University. Journal of Open Innovation: Technology, Market, and Complexity, 11(3), 100576. https://doi.org/10.1016/j.joitmc.2025.100576 DOI: https://doi.org/10.1016/j.joitmc.2025.100576

Malik, D. A. A., Yusof, Y., & Na’im Ku Khalif, K. M. (2021). A view of MCDM application in education. Journal of Physics: Conference Series, 1988(1), 012063. https://doi.org/10.1088/1742-6596/1988/1/012063 DOI: https://doi.org/10.1088/1742-6596/1988/1/012063

Marinović, M., Viduka, D., Lavrnić, I., Stojčetović, B., Skulić, A., Bašić, A., Balaban, P., & Rastovac, D. (2025). An Intelligent Multi-Criteria Decision Approach for Selecting the Optimal Operating System for Educational Environments. Electronics, 14(3), 514. https://doi.org/10.3390/electronics14030514 DOI: https://doi.org/10.3390/electronics14030514

Massam, B. H. (1988). Multi-criteria decision making (MCDM) techniques in planning. Progress in Planning, 30, 1–84. https://doi.org/10.1016/0305-9006(88)90012-8 DOI: https://doi.org/10.1016/0305-9006(88)90012-8

Milićević, V., Koceva Lazarova, L., & Jordovic Pavlovic, M. (2024). The Application of Artificial Intelligence in Education – The Current State and Trends. International Journal of Cognitive Research in Science, Engineering and Education (IJCRSEE), 12(2), 259–272. https://doi.org/10.23947/2334-8496-2024-12-2-259-272 DOI: https://doi.org/10.23947/2334-8496-2024-12-2-259-272

Nguyen, P. H. (2024). A data-driven MCDM approach-based spherical fuzzy sets for evaluating global augmented reality providers in education. IEEE Access, 13, 6102–6119. https://doi.org/10.1109/ACCESS.2024.3361320 DOI: https://doi.org/10.1109/ACCESS.2024.3361320

Pamučar, D., & Ćirović, G. (2015). The selection of transport and handling resources in logistics centers using Multi-Attributive Border Approximation area Comparison (MABAC). Expert systems with applications, 42(6), 3016-3028. https://doi.org/10.1016/j.eswa.2014.11.057 DOI: https://doi.org/10.1016/j.eswa.2014.11.057

Popović, S., & Đukić-Popović, S. (2021). The importance of introducing internal audit in pre-university education institutions [Značaj uvođenja interne revizije u ustanove douniverzitetskog obrazovanja]. Revizor, 24(94), 37–43. https://doi.org/10.5937/Rev2194037P

Popović, S. Đukić Popović, S., & Jeremić, N. (2022). Učesnici nastavnog procesa i interna revizija – istraživanje o informisanosti učesnika nastavnog procesa o internoj reviziji [Awareness of the participants of the teaching process about internal audit]. Revizor, 25(100), 41–48. https://doi.org/10.5937/Rev2194037P DOI: https://doi.org/10.5937/rev2194037P

Rane, N., Choudhary, S., & Rane, J. (2023). Education 4.0 and 5.0: Integrating artificial intelligence (AI) for personalized and adaptive learning. Available at SSRN 4638365. DOI: https://doi.org/10.2139/ssrn.4638365

Sahoo, S. K., & Goswami, S. S. (2023). A Comprehensive Review of Multiple Criteria Decision-Making (MCDM) Methods: Advancements, Applications, and Future Directions. Decision Making Advances, 1(1), 25–48. https://doi.org/10.31181/dma1120237 DOI: https://doi.org/10.31181/dma1120237

Sampson, C. J., Arnold, R., Bryan, S., Clarke, P., Ekins, S., Hatswell, A., ... & Wrightson, T. (2019). Transparency in decision modelling: what, why, who and how?. Pharmacoeconomics, 37(11), 1355–1369. https://doi.org/10.1007/s40273-019-00819-z DOI: https://doi.org/10.1007/s40273-019-00819-z

Spalević, Žaklina, Milosavljević, S., Dubljanin, D., Popović, G., & Ilić, M. (2024). The Role of Artificial Intelligence in Judicial Systems. International Journal of Cognitive Research in Science, Engineering and Education (IJCRSEE), 12(3), 561–569. https://doi.org/10.23947/2334-8496-2024-12-3-561-569 DOI: https://doi.org/10.23947/2334-8496-2024-12-3-561-569

Tariq, R., Mohammed, A., Alshibani, A., & Ramírez-Montoya, M. S. (2024). Complex artificial intelligence models for energy sustainability in educational buildings. Scientific Reports, 14, 15020. https://doi.org/10.1038/s41598-024-65727-5 DOI: https://doi.org/10.1038/s41598-024-65727-5

Toan, P. N., Dang, T.-T., & Hong, L. T. T. (2021). E-Learning Platform Assessment and Selection Using Two-Stage MCDM Approach with Grey Theory: A Case Study in Vietnam. Mathematics, 9(23), 3136. https://doi.org/10.3390/math9233136 DOI: https://doi.org/10.3390/math9233136

Troussas, C., Krouska, A., Mylonas, P., & Sgouropoulou, C. (2025). Personalized Instructional Strategy Adaptation Using TOPSIS: A MCDM Approach for Adaptive Learning Systems. Information, 16(5), 409. https://doi.org/10.3390/info16050409 DOI: https://doi.org/10.3390/info16050409

Tsankov, N., & Levunlieva, M. (2024). Designing Digital Multimodal Resources for the Kindergarten: From Intuition to Awareness. International Journal of Cognitive Research in Science, Engineering and Education (IJCRSEE), 12(3), 657–667. https://doi.org/10.23947/2334-8496-2024-12-3-657-667 DOI: https://doi.org/10.23947/2334-8496-2024-12-3-657-667

Vaidya, O. S., & Kumar, S. (2006). Analytic hierarchy process: An overview of applications. European Journal of Operational Research, 169(1), 1–29. https://doi.org/10.1016/j.ejor.2004.04.028 DOI: https://doi.org/10.1016/j.ejor.2004.04.028

Viennet, R., & Pont, B. (2017). Education policy implementation: A literature review and proposed framework. OECD Education Working Papers, No. 162. https://doi.org/10.1787/fc467a64-en DOI: https://doi.org/10.1787/fc467a64-en

Zabulis, X., Baltzakis, H., & Argyros, A. A. (2009). Vision-Based Hand Gesture Recognition for Human-Computer Interaction. The universal access handbook, 34, 30. https://doi.org/10.1201/9781420064995-c34. DOI: https://doi.org/10.1201/9781420064995-c34

Zangemeister, C. (1976). Nutzenwertanalyse in der Systemtechnik: Eine Methodik zur multidimensionalen Bewertung und Auswahl von Projektalternativen. München: Carl Hanser Verlag.

Zellner, M., Abbas, A. E., Budescu, D. V., & Galstyan, A. (2021). A survey of human judgement and quantitative forecasting methods. Royal Society Open Science, 8(2), 201187. https://doi.org/10.1098/rsos.201187 DOI: https://doi.org/10.1098/rsos.201187

Downloads

Published

2025-12-20

How to Cite

Gligorijević , N., Popović, S., Nikolić , V., Viduka, D., & Popović , S. (2025). A Hybrid SWARA-NWA Framework for Evaluating AI-Based Image Recognition Algorithms in Educational Technology Applications. International Journal of Cognitive Research in Science, Engineering and Education (IJCRSEE), 13(3), 719–735. https://doi.org/10.23947/2334-8496-2025-13-3-719-735

Metrics

Plaudit

Received 2025-07-15
Accepted 2025-09-30
Published 2025-12-20