Brain Mechanisms of Embodied Decision-Making

Authors

  • Yuri Aleksandrov Iosifovich Institute of Psychology RAS, Moscow, Russian Federation https://orcid.org/0000-0002-2644-3016
  • Olga E. Svarnik Institute of Psychology RAS, Moscow, Russian Federation; Moscow Institute of Physics and Technology, Moscow, Russian Federation https://orcid.org/0000-0002-0439-4532
  • Andrei V. Rozhdestvin Institute of Psychology RAS, Moscow, Russian Federation
  • Yuri V. Grinchenko Institute of Psychology RAS, Moscow, Russian Federation

DOI:

https://doi.org/10.23947/2334-8496-2022-10-2-163-171

Keywords:

mental rehearsal, embodied cognition, posterior cingulate cortex, rabbit, decision making

Abstract

One of the ways to comprehend mental abilities of individuals is to examine their underlying neural processes and mechanisms. To explore the role of cingulate cortical neurons in “mental rehearsal“ immediately before every trial of appetitive instrumental task in well-trained animals, we analyzed recorded single-unit activity in relation to the task-relevant events during task trials and during delay periods inside each trial in the same animals. The results showed that neuronal activity in the rabbit posterior cingulate cortex during the delay consisted mostly of activity of those neurons which were specialized in relation to this task, though the delay periods were not intended to remember previous events. The data indicated that these neuronal groups are involved in the processes of unfolding planned future behavior. Sequences of neuronal events during the delay period (i.e. during” covert behavior” phase), used for decision making, depended on the role of neuron in overt behavior. During delay periods replays (or preplays) started with activity of very selective (“narrow selective”) neurons, specialized in relation to concrete behavioral acts, but late in the delay included activity of such “broadly selective” neurons which might have been related to movements similar in broad categories of behavior. Such results indicate that task-related neurons with different degree of selectivity are all involved in overt and covert phase of experience actualization, which might imply that decision making in rabbits is the embodied cognitive process.

Downloads

Download data is not yet available.

References

Alexandrov, Y. I. (2008). How we fragment the world: the view from inside versus the view from outside. Social Science Information, 47(3), 419–457. https://doi.org/10.1177/0539018408092580 DOI: https://doi.org/10.1177/0539018408092580

Alexandrov, Y. I. (2022). “Chapter 3 Systemic Psychophysiology”. In: Forsythe C. (ed.). Russian Cognitive Neuroscience: Historical and Cultural Context. Leiden, The Netherlands: Brill. P. 56-86. https://doi.org/10.1163/9789004505667_004 DOI: https://doi.org/10.1163/9789004505667_004

Alexandrov, Y. I., Grinchenko, Y. V., & Jarvilehto, T. (1990). Change in the pattern of behavioural specialization of neurons in the motor cortex of the rabbit following lesion of the visual cortex. Acta physiologica scandinavica, 139(1-2), 371-385. https://doi.org/10.1111/j.1748-1716.1990.tb08936.x DOI: https://doi.org/10.1111/j.1748-1716.1990.tb08936.x

Alexandrov, Y. I., Sozinov, A. A., Svarnik, O. E., Gorkin, A. G., Kuzina, E. A., & Gavrilov, V. V. (2018). Neuronal bases of systemic organization of behavior. In Systems Neuroscience (pp. 1-33). Springer, Cham. https://doi.org/10.1007/978-3-319-94593-4_1 DOI: https://doi.org/10.1007/978-3-319-94593-4_1

Alexandrov, Yu.I., Grechenko, T.N., Gavrilov, V.V., Gorkin, A.G., Shevchenko, D.G., Grinchenko, Y.V., et al. (2000). Formation and realization of individual experience in humans and animals: a psychophysiological approach. In: R. Miller, A.M. Ivanitsky & P.M. Balaban (eds) Conceptual Advances in Brain Research, Complex Brain Functions Conceptual Advances in Russian Neuroscience, Vol. 2, pp. 181-200. Amsterdam: Harwood Academic Publishers.

Andersen, R. A., & Cui, H. (2009). Intention, action planning, and decision making in parietal-frontal circuits. Neuron, 63(5), 568-583. https://doi.org/10.1016/j.neuron.2009.08.028 DOI: https://doi.org/10.1016/j.neuron.2009.08.028

Anokhin, P. K. (1974). Biology and Neurophysiology of Conditioned Reflex and Its Role in Adaptive Behavior, 1st ed. Oxford: Pergamon Press. DOI: https://doi.org/10.1016/B978-0-08-021516-7.50008-2

Arieli, A., Sterkin, A., Grinvald, A., & Aertsen, A. D. (1996). Dynamics of ongoing activity: explanation of the large variability in evoked cortical responses. Science, 273(5283), 1868-1871. https://doi.org/10.1126/science.273.5283.1868 DOI: https://doi.org/10.1126/science.273.5283.1868

Bar, M. (2009). The proactive brain: memory for predictions. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1521), 1235-1243. https://doi.org/10.1098/rstb.2008.0310 DOI: https://doi.org/10.1098/rstb.2008.0310

Berkes, P., Orbán, G., Lengyel, M., & Fiser, J. (2011). Spontaneous cortical activity reveals hallmarks of an optimal internal model of the environment. Science, 331(6013), 83-87. https://doi.org/10.1126/science.1195870 DOI: https://doi.org/10.1126/science.1195870

Bisley, J. W., Zaksas, D., Droll, J. A., & Pasternak, T. (2004). Activity of neurons in cortical area MT during a memory for motion task. Journal of neurophysiology, 91(1), 286-300. https://doi.org/10.1152/jn.00870.2003 DOI: https://doi.org/10.1152/jn.00870.2003

Buzsaki G. (2019). The Brain from Inside Out. New York: Oxford University Press. DOI: https://doi.org/10.1093/oso/9780190905385.001.0001

Catanese, J., Cerasti, E., Zugaro, M., Viggiano, A., & Wiener, S. I. (2012). Dynamics of decision-related activity in hippocampus. Hippocampus, 22(9), 1901-1911. https://doi.org/10.1002/hipo.22025 DOI: https://doi.org/10.1002/hipo.22025

Changeux, J. P., & Dehaene, S. (1989). Neuronal models of cognitive functions. Cognition, 33(1-2), 63-109. https://doi.org/10.1016/0010-0277(89)90006-1 DOI: https://doi.org/10.1016/0010-0277(89)90006-1

Churchland, M. M., Cunningham, J. P., Kaufman, M. T., Ryu, S. I., & Shenoy, K. V. (2010). Cortical preparatory activity: representation of movement or first cog in a dynamical machine?. Neuron, 68(3), 387-400. https://doi.org/10.1016/j.neuron.2010.09.015 DOI: https://doi.org/10.1016/j.neuron.2010.09.015

Cisek, P., & Kalaska, J. F. (2004). Neural correlates of mental rehearsal in dorsal premotor cortex. Nature, 431(7011), 993-996. https://doi.org/10.1038/nature03005 DOI: https://doi.org/10.1038/nature03005

Clement, D. (1996). Kinds of Minds: Toward an Understanding of Consciousness. Basic Books.

Contreras, E. J. B., Schjetnan, A. G. P., Muhammad, A., Bartho, P., McNaughton, B. L., Kolb, B., ... & Luczak, A. (2013). Formation and reverberation of sequential neural activity patterns evoked by sensory stimulation are enhanced during cortical desynchronization. Neuron, 79(3), 555-566. https://doi.org/10.1016/j.neuron.2013.06.013 DOI: https://doi.org/10.1016/j.neuron.2013.06.013

Cossart, R. (2014). Operational hub cells: a morpho-physiologically diverse class of GABAergic neurons united by a common function. Current opinion in neurobiology, 26, 51-56. https://doi.org/10.1016/j.conb.2013.12.002 DOI: https://doi.org/10.1016/j.conb.2013.12.002

Crammond, D. J., & Kalaska, J. F. (2000). Prior information in motor and premotor cortex: activity during the delay period and effect on pre-movement activity. Journal of neurophysiology, 84(2), 986-1005. https://doi.org/10.1152/jn.2000.84.2.986 DOI: https://doi.org/10.1152/jn.2000.84.2.986

Dehaene, S., & Changeux, J. P. (1997). A hierarchical neuronal network for planning behavior. Proceedings of the National Academy of Sciences, 94(24), 13293-13298. https://doi.org/10.1073/pnas.94.24.13293 DOI: https://doi.org/10.1073/pnas.94.24.13293

Dennet, D.C. (1996). Kinds of minds: Toward an understanding of consciousness. New York: Harper Collins Publishers.

Ferster, D. (1996). Is neural noise just a nuisance?. Science, 273(5283), 1812-1812. https://doi.org/10.1126/science.273.5283.1812 DOI: https://doi.org/10.1126/science.273.5283.1812

Foster, D. J., & Wilson, M. A. (2006). Reverse replay of behavioural sequences in hippocampal place cells during the awake state. Nature, 440(7084), 680-683. https://doi.org/10.1038/nature04587 DOI: https://doi.org/10.1038/nature04587

Freedman, D. J., & Assad, J. A. (2011). A proposed common neural mechanism for categorization and perceptual decisions. Nature neuroscience, 14(2), 143-146. https://doi.org/10.1038/nn.2740 DOI: https://doi.org/10.1038/nn.2740

Gallese, V., & Lakoff, G. (2005). The brain’s concepts: the role of the sensory-motor system in conceptual knowledge. Cognitive Neuropsychology, 22, 455-479. https://doi.org/10.1080/02643290442000310 DOI: https://doi.org/10.1080/02643290442000310

Gheidi, A., Satvat, E., & Marrone, D. F. (2012). Experience-dependent recruitment of Arc expression in multiple systems during rest. Journal of Neuroscience Research, 90(9), 1820-1829. https://doi.org/10.1002/jnr.23057 DOI: https://doi.org/10.1002/jnr.23057

Gold, J. I., & Shadlen, M. N. (2007). The neural basis of decision making. Annual review of neuroscience, 30(1), 535-574. https://doi.org/10.1146/annurev.neuro.29.051605.113038 DOI: https://doi.org/10.1146/annurev.neuro.29.051605.113038

Gorkin, A. G., & Shevchenko, D. G. (1991). Stability of the behavioral specialization of neurons. Neuroscience and behavioral physiology, 21(3), 222-229. https://doi.org/10.1007/BF01191659 DOI: https://doi.org/10.1007/BF01191659

Ingram, T. G., Kraeutner, S. N., Solomon, J. P., Westwood, D. A., & Boe, S. G. (2016). Skill acquisition via motor imagery relies on both motor and perceptual learning. Behavioral Neuroscience, 130(2), 252. https://doi.org/10.1037/bne0000126 DOI: https://doi.org/10.1037/bne0000126

Kim, K., Ladenbauer, J., Babo-Rebelo, M., Buot, A., Lehongre, K., Adam, C., ... & Tallon-Baudry, C. (2019). Resting-state neural firing rate is linked to cardiac-cycle duration in the human cingulate and parahippocampal cortices. Journal of Neuroscience, 39(19), 3676-3686. https://doi.org/10.1523/JNEUROSCI.2291-18.2019 DOI: https://doi.org/10.1523/JNEUROSCI.2291-18.2019

MacDonald, C. J., Carrow, S., Place, R., & Eichenbaum, H. (2013). Distinct hippocampal time cell sequences represent odor memories in immobilized rats. Journal of Neuroscience, 33(36), 14607-14616. https://doi.org/10.1523/JNEUROSCI.1537-13.2013 DOI: https://doi.org/10.1523/JNEUROSCI.1537-13.2013

Murakami, M., & Mainen, Z. F. (2015). Preparing and selecting actions with neural populations: toward cortical circuit mechanisms. Current opinion in neurobiology, 33, 40-46. https://doi.org/10.1016/j.conb.2015.01.005 DOI: https://doi.org/10.1016/j.conb.2015.01.005

Narayanan, N. S., & Laubach, M. (2009). Delay activity in rodent frontal cortex during a simple reaction time task. Journal of neurophysiology, 101(6), 2859-2871. https://doi.org/10.1152/jn.90615.2008 DOI: https://doi.org/10.1152/jn.90615.2008

O’Neill, J., Pleydell-Bouverie, B., Dupret, D., & Csicsvari, J. (2010). Play it again: reactivation of waking experience and memory. Trends in neurosciences, 33(5), 220-229. https://doi.org/10.1016/j.tins.2010.01.006 DOI: https://doi.org/10.1016/j.tins.2010.01.006

Park, I. M., Meister, M. L., Huk, A. C., & Pillow, J. W. (2014). Encoding and decoding in parietal cortex during sensorimotor decision-making. Nature neuroscience, 17(10), 1395-1403. https://doi.org/10.1038/nn.3800 DOI: https://doi.org/10.1038/nn.3800

Rushworth, M. F. S., Walton, M. E., Kennerley, S. W., & Bannerman, D. M. (2004). Action sets and decisions in the medial frontal cortex. Trends in cognitive sciences, 8(9), 410-417. https://doi.org/10.1016/j.tics.2004.07.009 DOI: https://doi.org/10.1016/j.tics.2004.07.009

Sauvage, C., De Greef, N., Manto, M., Jissendi, P., Nioche, C., & Habas, C. (2015). Reorganization of large-scale cognitive networks during automation of imagination of a complex sequential movement. Journal of neuroradiology, 42(2), 115-125. https://doi.org/10.1016/j.neurad.2014.04.001 DOI: https://doi.org/10.1016/j.neurad.2014.04.001

Schurger, A., Pak, J., & Roskies, A. L. (2021). What is the readiness potential?. Trends in cognitive sciences, 25(7), 558-570. https://doi.org/10.1016/j.tics.2021.04.001 DOI: https://doi.org/10.1016/j.tics.2021.04.001

Shvyrkov, V. B. (1986). Behavioral specialization of neurons and the system-selection hypothesis of learning. In: F. Klix & H. Hagendorf (eds) Human Memory and Cognitive Capabilities, pp. 599-611. Amsterdam: Elsevier.

Singer, A. C., Carr, M. F., Karlsson, M. P., & Frank, L. M. (2013). Hippocampal SWR activity predicts correct decisions during the initial learning of an alternation task. Neuron, 77(6), 1163-1173. https://doi.org/10.1016/j.neuron.2013.01.027 DOI: https://doi.org/10.1016/j.neuron.2013.01.027

Sozinov, A. A., Bakhchinaa, A. V., & Alexandrov, Y. I. (2021). The Way of Learning Preserved in The Structure of Individual Experience Shapes Task-Switching: Implications for Neuroscience and Education. International Journal of Cognitive Research in Science, Engineering and Education:(IJCRSEE), 9(2), 291-299. https://doi.org/10.23947/2334-8496-2021-9-2-291-299 DOI: https://doi.org/10.23947/2334-8496-2021-9-2-291-299

Svarnik, O. E., Alexandrov, Y. I., Gavrilov, V. V., Grinchenko, Y. V., & Anokhin, K. V. (2005). Fos expression and task-related neuronal activity in rat cerebral cortex after instrumental learning. Neuroscience, 136(1), 33-42. https://doi.org/10.1016/j.neuroscience.2005.07.038 DOI: https://doi.org/10.1016/j.neuroscience.2005.07.038

Tervo, D. G., Proskurin, M., Manakov, M., Kabra, M., Vollmer, A., Branson, K., & Karpova, A. Y. (2014). Behavioral variability through stochastic choice and its gating by anterior cingulate cortex. Cell, 159(1), 21-32. https://doi.org/10.1016/j.cell.2014.08.037 DOI: https://doi.org/10.1016/j.cell.2014.08.037

Thura, D., & Cisek, P. (2014). Deliberation and commitment in the premotor and primary motor cortex during dynamic decision making. Neuron, 81(6), 1401-1416. https://doi.org/10.1016/j.neuron.2014.01.031 DOI: https://doi.org/10.1016/j.neuron.2014.01.031

Vaadia, E., Haalman, I., Abeles, M., Bergman, H., Prut, Y., Slovin, H., & Aertsen, A. M. H. J. (1995). Dynamics of neuronal interactions in monkey cortex in relation to behavioural events. Nature, 373(6514), 515-518. https://doi.org/10.1038/373515a0 DOI: https://doi.org/10.1038/373515a0

van der Meer, M.A., Redish, A.D. (2010). Expectancies in decision making, reinforcement learning, and ventral striatum. Frontiers in Neuroscience, 15, 6. https://doi.org/10.3389/neuro.01.006.2010 DOI: https://doi.org/10.3389/neuro.01.006.2010

Vann, S. D., Aggleton, J. P., & Maguire, E. A. (2009). What does the retrosplenial cortex do?. Nature reviews neuroscience, 10(11), 792-802. https://doi.org/10.1038/nrn2733 DOI: https://doi.org/10.1038/nrn2733

Viard, A., Chételat, G., Lebreton, K., Desgranges, B., Landeau, B., de La Sayette, V., ... & Piolino, P. (2011). Mental time travel into the past and the future in healthy aged adults: an fMRI study. Brain and cognition, 75(1), 1-9. 1-9. https://doi.org/10.1016/j.bandc.2010.10.009 DOI: https://doi.org/10.1016/j.bandc.2010.10.009

Vogt, B. A. (2016). Cytoarchitecture and neurocytology of rabbit cingulate cortex. Brain Structure and Function, 221(7), 3571-3589. https://doi.org/10.1007/s00429-015-1120-x DOI: https://doi.org/10.1007/s00429-015-1120-x

Walton, M. E., Devlin, J. T., & Rushworth, M. F. (2004). Interactions between decision making and performance monitoring within prefrontal cortex. Nature neuroscience, 7(11), 1259-1265. https://doi.org/10.1038/nn1339 DOI: https://doi.org/10.1038/nn1339

Whittingstall, K., Bernier, M., Houde, J. C., Fortin, D., & Descoteaux, M. (2014). Structural network underlying visuospatial imagery in humans. Cortex, 56, 85-98. https://doi.org/10.1016/j.cortex.2013.02.004 DOI: https://doi.org/10.1016/j.cortex.2013.02.004

Wilson, M. A., & McNaughton, B. L. (1994). Reactivation of hippocampal ensemble memories during sleep. Science, 265(5172), 676-679. https://doi.org/10.1126/science.8036517 DOI: https://doi.org/10.1126/science.8036517

Published

2022-08-31

How to Cite

Aleksandrov Iosifovich, Y., E. Svarnik, O., Andrei V. Rozhdestvin, & V. Grinchenko, Y. (2022). Brain Mechanisms of Embodied Decision-Making. International Journal of Cognitive Research in Science, Engineering and Education (IJCRSEE), 10(2), 163–171. https://doi.org/10.23947/2334-8496-2022-10-2-163-171

Metrics

Plaudit

Received 2022-01-25
Accepted 2022-06-07
Published 2022-08-31