Brain Mechanisms of Embodied Decision-Making
DOI:
https://doi.org/10.23947/2334-8496-2022-10-2-163-171Keywords:
mental rehearsal, embodied cognition, posterior cingulate cortex, rabbit, decision makingAbstract
One of the ways to comprehend mental abilities of individuals is to examine their underlying neural processes and mechanisms. To explore the role of cingulate cortical neurons in “mental rehearsal“ immediately before every trial of appetitive instrumental task in well-trained animals, we analyzed recorded single-unit activity in relation to the task-relevant events during task trials and during delay periods inside each trial in the same animals. The results showed that neuronal activity in the rabbit posterior cingulate cortex during the delay consisted mostly of activity of those neurons which were specialized in relation to this task, though the delay periods were not intended to remember previous events. The data indicated that these neuronal groups are involved in the processes of unfolding planned future behavior. Sequences of neuronal events during the delay period (i.e. during” covert behavior” phase), used for decision making, depended on the role of neuron in overt behavior. During delay periods replays (or preplays) started with activity of very selective (“narrow selective”) neurons, specialized in relation to concrete behavioral acts, but late in the delay included activity of such “broadly selective” neurons which might have been related to movements similar in broad categories of behavior. Such results indicate that task-related neurons with different degree of selectivity are all involved in overt and covert phase of experience actualization, which might imply that decision making in rabbits is the embodied cognitive process.
Downloads
References
Alexandrov, Y. I. (2008). How we fragment the world: the view from inside versus the view from outside. Social Science Information, 47(3), 419–457. https://doi.org/10.1177/0539018408092580 DOI: https://doi.org/10.1177/0539018408092580
Alexandrov, Y. I. (2022). “Chapter 3 Systemic Psychophysiology”. In: Forsythe C. (ed.). Russian Cognitive Neuroscience: Historical and Cultural Context. Leiden, The Netherlands: Brill. P. 56-86. https://doi.org/10.1163/9789004505667_004 DOI: https://doi.org/10.1163/9789004505667_004
Alexandrov, Y. I., Grinchenko, Y. V., & Jarvilehto, T. (1990). Change in the pattern of behavioural specialization of neurons in the motor cortex of the rabbit following lesion of the visual cortex. Acta physiologica scandinavica, 139(1-2), 371-385. https://doi.org/10.1111/j.1748-1716.1990.tb08936.x DOI: https://doi.org/10.1111/j.1748-1716.1990.tb08936.x
Alexandrov, Y. I., Sozinov, A. A., Svarnik, O. E., Gorkin, A. G., Kuzina, E. A., & Gavrilov, V. V. (2018). Neuronal bases of systemic organization of behavior. In Systems Neuroscience (pp. 1-33). Springer, Cham. https://doi.org/10.1007/978-3-319-94593-4_1 DOI: https://doi.org/10.1007/978-3-319-94593-4_1
Alexandrov, Yu.I., Grechenko, T.N., Gavrilov, V.V., Gorkin, A.G., Shevchenko, D.G., Grinchenko, Y.V., et al. (2000). Formation and realization of individual experience in humans and animals: a psychophysiological approach. In: R. Miller, A.M. Ivanitsky & P.M. Balaban (eds) Conceptual Advances in Brain Research, Complex Brain Functions Conceptual Advances in Russian Neuroscience, Vol. 2, pp. 181-200. Amsterdam: Harwood Academic Publishers.
Andersen, R. A., & Cui, H. (2009). Intention, action planning, and decision making in parietal-frontal circuits. Neuron, 63(5), 568-583. https://doi.org/10.1016/j.neuron.2009.08.028 DOI: https://doi.org/10.1016/j.neuron.2009.08.028
Anokhin, P. K. (1974). Biology and Neurophysiology of Conditioned Reflex and Its Role in Adaptive Behavior, 1st ed. Oxford: Pergamon Press. DOI: https://doi.org/10.1016/B978-0-08-021516-7.50008-2
Arieli, A., Sterkin, A., Grinvald, A., & Aertsen, A. D. (1996). Dynamics of ongoing activity: explanation of the large variability in evoked cortical responses. Science, 273(5283), 1868-1871. https://doi.org/10.1126/science.273.5283.1868 DOI: https://doi.org/10.1126/science.273.5283.1868
Bar, M. (2009). The proactive brain: memory for predictions. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1521), 1235-1243. https://doi.org/10.1098/rstb.2008.0310 DOI: https://doi.org/10.1098/rstb.2008.0310
Berkes, P., Orbán, G., Lengyel, M., & Fiser, J. (2011). Spontaneous cortical activity reveals hallmarks of an optimal internal model of the environment. Science, 331(6013), 83-87. https://doi.org/10.1126/science.1195870 DOI: https://doi.org/10.1126/science.1195870
Bisley, J. W., Zaksas, D., Droll, J. A., & Pasternak, T. (2004). Activity of neurons in cortical area MT during a memory for motion task. Journal of neurophysiology, 91(1), 286-300. https://doi.org/10.1152/jn.00870.2003 DOI: https://doi.org/10.1152/jn.00870.2003
Buzsaki G. (2019). The Brain from Inside Out. New York: Oxford University Press. DOI: https://doi.org/10.1093/oso/9780190905385.001.0001
Catanese, J., Cerasti, E., Zugaro, M., Viggiano, A., & Wiener, S. I. (2012). Dynamics of decision-related activity in hippocampus. Hippocampus, 22(9), 1901-1911. https://doi.org/10.1002/hipo.22025 DOI: https://doi.org/10.1002/hipo.22025
Changeux, J. P., & Dehaene, S. (1989). Neuronal models of cognitive functions. Cognition, 33(1-2), 63-109. https://doi.org/10.1016/0010-0277(89)90006-1 DOI: https://doi.org/10.1016/0010-0277(89)90006-1
Churchland, M. M., Cunningham, J. P., Kaufman, M. T., Ryu, S. I., & Shenoy, K. V. (2010). Cortical preparatory activity: representation of movement or first cog in a dynamical machine?. Neuron, 68(3), 387-400. https://doi.org/10.1016/j.neuron.2010.09.015 DOI: https://doi.org/10.1016/j.neuron.2010.09.015
Cisek, P., & Kalaska, J. F. (2004). Neural correlates of mental rehearsal in dorsal premotor cortex. Nature, 431(7011), 993-996. https://doi.org/10.1038/nature03005 DOI: https://doi.org/10.1038/nature03005
Clement, D. (1996). Kinds of Minds: Toward an Understanding of Consciousness. Basic Books.
Contreras, E. J. B., Schjetnan, A. G. P., Muhammad, A., Bartho, P., McNaughton, B. L., Kolb, B., ... & Luczak, A. (2013). Formation and reverberation of sequential neural activity patterns evoked by sensory stimulation are enhanced during cortical desynchronization. Neuron, 79(3), 555-566. https://doi.org/10.1016/j.neuron.2013.06.013 DOI: https://doi.org/10.1016/j.neuron.2013.06.013
Cossart, R. (2014). Operational hub cells: a morpho-physiologically diverse class of GABAergic neurons united by a common function. Current opinion in neurobiology, 26, 51-56. https://doi.org/10.1016/j.conb.2013.12.002 DOI: https://doi.org/10.1016/j.conb.2013.12.002
Crammond, D. J., & Kalaska, J. F. (2000). Prior information in motor and premotor cortex: activity during the delay period and effect on pre-movement activity. Journal of neurophysiology, 84(2), 986-1005. https://doi.org/10.1152/jn.2000.84.2.986 DOI: https://doi.org/10.1152/jn.2000.84.2.986
Dehaene, S., & Changeux, J. P. (1997). A hierarchical neuronal network for planning behavior. Proceedings of the National Academy of Sciences, 94(24), 13293-13298. https://doi.org/10.1073/pnas.94.24.13293 DOI: https://doi.org/10.1073/pnas.94.24.13293
Dennet, D.C. (1996). Kinds of minds: Toward an understanding of consciousness. New York: Harper Collins Publishers.
Ferster, D. (1996). Is neural noise just a nuisance?. Science, 273(5283), 1812-1812. https://doi.org/10.1126/science.273.5283.1812 DOI: https://doi.org/10.1126/science.273.5283.1812
Foster, D. J., & Wilson, M. A. (2006). Reverse replay of behavioural sequences in hippocampal place cells during the awake state. Nature, 440(7084), 680-683. https://doi.org/10.1038/nature04587 DOI: https://doi.org/10.1038/nature04587
Freedman, D. J., & Assad, J. A. (2011). A proposed common neural mechanism for categorization and perceptual decisions. Nature neuroscience, 14(2), 143-146. https://doi.org/10.1038/nn.2740 DOI: https://doi.org/10.1038/nn.2740
Gallese, V., & Lakoff, G. (2005). The brain’s concepts: the role of the sensory-motor system in conceptual knowledge. Cognitive Neuropsychology, 22, 455-479. https://doi.org/10.1080/02643290442000310 DOI: https://doi.org/10.1080/02643290442000310
Gheidi, A., Satvat, E., & Marrone, D. F. (2012). Experience-dependent recruitment of Arc expression in multiple systems during rest. Journal of Neuroscience Research, 90(9), 1820-1829. https://doi.org/10.1002/jnr.23057 DOI: https://doi.org/10.1002/jnr.23057
Gold, J. I., & Shadlen, M. N. (2007). The neural basis of decision making. Annual review of neuroscience, 30(1), 535-574. https://doi.org/10.1146/annurev.neuro.29.051605.113038 DOI: https://doi.org/10.1146/annurev.neuro.29.051605.113038
Gorkin, A. G., & Shevchenko, D. G. (1991). Stability of the behavioral specialization of neurons. Neuroscience and behavioral physiology, 21(3), 222-229. https://doi.org/10.1007/BF01191659 DOI: https://doi.org/10.1007/BF01191659
Ingram, T. G., Kraeutner, S. N., Solomon, J. P., Westwood, D. A., & Boe, S. G. (2016). Skill acquisition via motor imagery relies on both motor and perceptual learning. Behavioral Neuroscience, 130(2), 252. https://doi.org/10.1037/bne0000126 DOI: https://doi.org/10.1037/bne0000126
Kim, K., Ladenbauer, J., Babo-Rebelo, M., Buot, A., Lehongre, K., Adam, C., ... & Tallon-Baudry, C. (2019). Resting-state neural firing rate is linked to cardiac-cycle duration in the human cingulate and parahippocampal cortices. Journal of Neuroscience, 39(19), 3676-3686. https://doi.org/10.1523/JNEUROSCI.2291-18.2019 DOI: https://doi.org/10.1523/JNEUROSCI.2291-18.2019
MacDonald, C. J., Carrow, S., Place, R., & Eichenbaum, H. (2013). Distinct hippocampal time cell sequences represent odor memories in immobilized rats. Journal of Neuroscience, 33(36), 14607-14616. https://doi.org/10.1523/JNEUROSCI.1537-13.2013 DOI: https://doi.org/10.1523/JNEUROSCI.1537-13.2013
Murakami, M., & Mainen, Z. F. (2015). Preparing and selecting actions with neural populations: toward cortical circuit mechanisms. Current opinion in neurobiology, 33, 40-46. https://doi.org/10.1016/j.conb.2015.01.005 DOI: https://doi.org/10.1016/j.conb.2015.01.005
Narayanan, N. S., & Laubach, M. (2009). Delay activity in rodent frontal cortex during a simple reaction time task. Journal of neurophysiology, 101(6), 2859-2871. https://doi.org/10.1152/jn.90615.2008 DOI: https://doi.org/10.1152/jn.90615.2008
O’Neill, J., Pleydell-Bouverie, B., Dupret, D., & Csicsvari, J. (2010). Play it again: reactivation of waking experience and memory. Trends in neurosciences, 33(5), 220-229. https://doi.org/10.1016/j.tins.2010.01.006 DOI: https://doi.org/10.1016/j.tins.2010.01.006
Park, I. M., Meister, M. L., Huk, A. C., & Pillow, J. W. (2014). Encoding and decoding in parietal cortex during sensorimotor decision-making. Nature neuroscience, 17(10), 1395-1403. https://doi.org/10.1038/nn.3800 DOI: https://doi.org/10.1038/nn.3800
Rushworth, M. F. S., Walton, M. E., Kennerley, S. W., & Bannerman, D. M. (2004). Action sets and decisions in the medial frontal cortex. Trends in cognitive sciences, 8(9), 410-417. https://doi.org/10.1016/j.tics.2004.07.009 DOI: https://doi.org/10.1016/j.tics.2004.07.009
Sauvage, C., De Greef, N., Manto, M., Jissendi, P., Nioche, C., & Habas, C. (2015). Reorganization of large-scale cognitive networks during automation of imagination of a complex sequential movement. Journal of neuroradiology, 42(2), 115-125. https://doi.org/10.1016/j.neurad.2014.04.001 DOI: https://doi.org/10.1016/j.neurad.2014.04.001
Schurger, A., Pak, J., & Roskies, A. L. (2021). What is the readiness potential?. Trends in cognitive sciences, 25(7), 558-570. https://doi.org/10.1016/j.tics.2021.04.001 DOI: https://doi.org/10.1016/j.tics.2021.04.001
Shvyrkov, V. B. (1986). Behavioral specialization of neurons and the system-selection hypothesis of learning. In: F. Klix & H. Hagendorf (eds) Human Memory and Cognitive Capabilities, pp. 599-611. Amsterdam: Elsevier.
Singer, A. C., Carr, M. F., Karlsson, M. P., & Frank, L. M. (2013). Hippocampal SWR activity predicts correct decisions during the initial learning of an alternation task. Neuron, 77(6), 1163-1173. https://doi.org/10.1016/j.neuron.2013.01.027 DOI: https://doi.org/10.1016/j.neuron.2013.01.027
Sozinov, A. A., Bakhchinaa, A. V., & Alexandrov, Y. I. (2021). The Way of Learning Preserved in The Structure of Individual Experience Shapes Task-Switching: Implications for Neuroscience and Education. International Journal of Cognitive Research in Science, Engineering and Education:(IJCRSEE), 9(2), 291-299. https://doi.org/10.23947/2334-8496-2021-9-2-291-299 DOI: https://doi.org/10.23947/2334-8496-2021-9-2-291-299
Svarnik, O. E., Alexandrov, Y. I., Gavrilov, V. V., Grinchenko, Y. V., & Anokhin, K. V. (2005). Fos expression and task-related neuronal activity in rat cerebral cortex after instrumental learning. Neuroscience, 136(1), 33-42. https://doi.org/10.1016/j.neuroscience.2005.07.038 DOI: https://doi.org/10.1016/j.neuroscience.2005.07.038
Tervo, D. G., Proskurin, M., Manakov, M., Kabra, M., Vollmer, A., Branson, K., & Karpova, A. Y. (2014). Behavioral variability through stochastic choice and its gating by anterior cingulate cortex. Cell, 159(1), 21-32. https://doi.org/10.1016/j.cell.2014.08.037 DOI: https://doi.org/10.1016/j.cell.2014.08.037
Thura, D., & Cisek, P. (2014). Deliberation and commitment in the premotor and primary motor cortex during dynamic decision making. Neuron, 81(6), 1401-1416. https://doi.org/10.1016/j.neuron.2014.01.031 DOI: https://doi.org/10.1016/j.neuron.2014.01.031
Vaadia, E., Haalman, I., Abeles, M., Bergman, H., Prut, Y., Slovin, H., & Aertsen, A. M. H. J. (1995). Dynamics of neuronal interactions in monkey cortex in relation to behavioural events. Nature, 373(6514), 515-518. https://doi.org/10.1038/373515a0 DOI: https://doi.org/10.1038/373515a0
van der Meer, M.A., Redish, A.D. (2010). Expectancies in decision making, reinforcement learning, and ventral striatum. Frontiers in Neuroscience, 15, 6. https://doi.org/10.3389/neuro.01.006.2010 DOI: https://doi.org/10.3389/neuro.01.006.2010
Vann, S. D., Aggleton, J. P., & Maguire, E. A. (2009). What does the retrosplenial cortex do?. Nature reviews neuroscience, 10(11), 792-802. https://doi.org/10.1038/nrn2733 DOI: https://doi.org/10.1038/nrn2733
Viard, A., Chételat, G., Lebreton, K., Desgranges, B., Landeau, B., de La Sayette, V., ... & Piolino, P. (2011). Mental time travel into the past and the future in healthy aged adults: an fMRI study. Brain and cognition, 75(1), 1-9. 1-9. https://doi.org/10.1016/j.bandc.2010.10.009 DOI: https://doi.org/10.1016/j.bandc.2010.10.009
Vogt, B. A. (2016). Cytoarchitecture and neurocytology of rabbit cingulate cortex. Brain Structure and Function, 221(7), 3571-3589. https://doi.org/10.1007/s00429-015-1120-x DOI: https://doi.org/10.1007/s00429-015-1120-x
Walton, M. E., Devlin, J. T., & Rushworth, M. F. (2004). Interactions between decision making and performance monitoring within prefrontal cortex. Nature neuroscience, 7(11), 1259-1265. https://doi.org/10.1038/nn1339 DOI: https://doi.org/10.1038/nn1339
Whittingstall, K., Bernier, M., Houde, J. C., Fortin, D., & Descoteaux, M. (2014). Structural network underlying visuospatial imagery in humans. Cortex, 56, 85-98. https://doi.org/10.1016/j.cortex.2013.02.004 DOI: https://doi.org/10.1016/j.cortex.2013.02.004
Wilson, M. A., & McNaughton, B. L. (1994). Reactivation of hippocampal ensemble memories during sleep. Science, 265(5172), 676-679. https://doi.org/10.1126/science.8036517 DOI: https://doi.org/10.1126/science.8036517
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2022 Aleksandrov Yuri Iosifovich, Olga E. Svarnik, Andrei V. Rozhdestvin , Yuri V. Grinchenko

This work is licensed under a Creative Commons Attribution 4.0 International License.
Plaudit
Accepted 2022-06-07
Published 2022-08-31

