Prediction of Academic Success Based on Teaching Quality Using Fuzzy Logic
DOI:
https://doi.org/10.23947/2334-8496-2025-13-3-603-623Keywords:
Teaching quality, Professional studies, Fuzzy logic, Anfis, Soft computingAbstract
This research aims to examine the impact of the quality of teaching on the success of vocational students, focusing on professional-applicative subjects in the field of information technology, as well as on general education subjects. The quality of teaching was analyzed through six factors: comprehensibility of the teaching content, applicability of the material, quality of the teaching material, teacher’s commitment, working atmosphere and objectivity of assessment. The academic success of students is represented by the course grade. An adaptive neuro-fuzzy system, ANFIS, was used to model the relationship between the aforementioned factors and academic achievement, which combines the advantages of fuzzy logic and neural networks. Data were collected through a structured questionnaire with a Likert scale, and the model was trained and evaluated using soft computing techniques. The results show that the quality of the teaching material, the dedication of teachers and the working atmosphere have the greatest influence on the success of students. These factors were singled out as the most significant predictors of success within the ANFIS model. The findings indicate the need for a systematic approach to improving the quality of teaching in professional studies and confirm the usefulness of artificial intelligence in the analysis of educational data.
Downloads
References
Abdi, H., Valentin, D., & Edelman, B. (1999), Neural networks (No. 124). Sage. https://methods.sagepub.com/book/mono/neural-networks/toc DOI: https://doi.org/10.4135/9781412985277
Anđelković B., (2006). Istraživanje i razvoj novih metoda za proračun steznih sklopova primenom neuronskih mreža i fazi logike [Research and development of new methods for the calculation of clamping circuits using neural networks and fuzzy logic], (Doctoral dissertation), Mašinski fakultetet Niš.
Adamović, V. M. (2018). Predviđanje indikatora za upravljanje čvrstim otpadom na nacionalnom nivou primenom veštačkih neuronskih mreža [Prediction of indicators for solid waste management at the national level using artificial neural networks], (Doctoral dissertation, University of Belgrade (Serbia)). https://www.proquest.com/openview/196aec169b9652cf2882b4b37e865d29/1?pq-origsite=gscholar&cbl=2026366&diss=y
Baker, R. S., Martin, T., & Rossi, L. M. (2016). Educational data mining and learning analytics. The Wiley handbook of cognition and assessment: Frameworks, methodologies, and applications, 379-396. https://doi.org/10.1002/9781118956588.ch16 DOI: https://doi.org/10.1002/9781118956588.ch16
Buchaniec, S., Gnatowski, M., & Brus, G. (2021). Integration of classical mathematical modeling with an artificial neural network for the problems with limited dataset. Energies, 14(16), 5127. https://www.mdpi.com/1996-1073/14/16/5127 DOI: https://doi.org/10.3390/en14165127
Buragohain, M., & Mahanta, C. (2008). A novel approach for ANFIS modelling based on full factorial design. Applied soft computing, 8(1), 609-625. https://doi.org/10.1016/j.asoc.2007.03.010 DOI: https://doi.org/10.1016/j.asoc.2007.03.010
Bakri, R., Rahma, A. N., Suryani, I., & Sari, Y. (2020), Penerapan Logika Fuzzy Dalam Menentukan Jumlah Peserta Bpjs Kesehatan Menggunakan Fuzzy Inference System Sugeno. Jurnal Lebesgue: Jurnal Ilmiah Pendidikan Matematika, Matematika dan Statistika, 1(3), 182-192. https://pdfs.semanticscholar.org/8a3c/05006756cdaf9623b143bb6679418f0cd60a.pdf DOI: https://doi.org/10.46306/lb.v1i3.38
Celikyilmaz, A., & Türksen, I. B. (2009). Modeling uncertainty with fuzzy logic. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-89924-2 DOI: https://doi.org/10.1007/978-3-540-89924-2
Chong, D. J. S., Chan, Y. J., Arumugasamy, S. K., Yazdi, S. K., & Lim, J. W. (2023). Optimisation and performance evaluation of response surface methodology (RSM), artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) in the prediction of biogas production from palm oil mill effluent (POME). Energy, 266, 126449. https://doi.org/10.1016/j.energy.2022.126449
Ćalasan, M., Aleem, S. H. A., & Zobaa, A. F. (2020). On the root mean square error (RMSE) calculation for parameter estimation of photovoltaic models: A novel exact analytical solution based on Lambert W function. Energy conversion and management, 210, 112716. https://doi.org/10.1016/j.enconman.2020.112716 DOI: https://doi.org/10.1016/j.enconman.2020.112716
Chong, D. J. S., Chan, Y. J., Arumugasamy, S. K., Yazdi, S. K., & Lim, J. W. (2023). Optimisation and performance evaluation of response surface methodology (RSM), artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) in the prediction of biogas production from palm oil mill effluent (POME). Energy, 266, 126449. https://doi.org/10.1016/j.energy.2022.126449 DOI: https://doi.org/10.1016/j.energy.2022.126449
Fountas, Z. (2011). Spiking neural networks for human-like avatar control in a simulated environment. Computing Science of Imperial College London, 1-60. https://www.doc.ic.ac.uk/teaching/distinguished-projects/2011/z.fountas.pdf
Haykin, S. (1998), Neural networks: a comprehensive foundation. Prentice Hall PTR. https://dl.acm.org/doi/abs/10.5555/541500
Jang, J. S. (1993). ANFIS: adaptive-network-based fuzzy inference system. IEEE transactions on systems, man, and cybernetics, 23(3), 665-685. https://doi.org/10.1109/21.256541 DOI: https://doi.org/10.1109/21.256541
Ligia, E., Iskandar, K., Surajaya, I. K., Bayasut, M., Jayanagara, O., & Mizuno, K. (2024). Cultural clash: Investigating how entrepreneural characteristics and culture diffusion affect international interns’ competency. Aptisi Transactions on Technopreneurship (ATT), 6(2), 182-198. https://att.aptisi.or.id/index.php/att/article/view/398 DOI: https://doi.org/10.34306/att.v6i2.398
Mojsilović, M., Pepić, S., Popović, G., Saračević, M., & Karabašević, D. (2025). Application of Soft Computing Techniques in the Analysis of Educational Data Using Fuzzy Logic. Mathematics, 13(13), 2096. https://doi.org/10.3390/math13132096 DOI: https://doi.org/10.3390/math13132096
Mehrotra, K., Mohan, C. K., & Ranka, S. (1997). Elements of artificial neural networks. MIT press. https://direct.mit.edu/books/monograph/3932/Elements-of-Artificial-Neural-Networks DOI: https://doi.org/10.7551/mitpress/2687.001.0001
Mojsilović, M., Cvejić, R., Pepić, S., Karabašević, D., Saračević, M., & Stanujkić, D. (2023). Statistical evaluation of the achievements of professional students by combination of the random forest algorithm and the ANFIS method. Heliyon, 9(11). https://pubmed.ncbi.nlm.nih.gov/38027614/ DOI: https://doi.org/10.1016/j.heliyon.2023.e21768
Milovanović, M. B. (2018). Upravljanje dinamičkim sistemima primenom adaptivnih ortogonalnih neuronskih mreža [Management of dynamic systems using adaptive orthogonal neural networks]. Univerzitet u Nišu. https://nardus.mpn.gov.rs/bitstream/id/52334/Disertacija.pdf
Razeghi, S. A. (2022). Razvoj modela upravljanja cirkulacijom u postupku bušenja korišćenjem neuro fazi sistema zaključivanja [Development of a circulation control model in the drilling process using a neuro fuzzy inference system]. Univerzitet u Beogradu. https://www.proquest.com/openview/d737bf260854749c1c9f56d7b97fedf4/1?pq-origsite=gscholar&cbl=2026366&diss=y
Shanmuganathan, S. (2016). Artificial neural network modelling: An introduction (pp. 1-14). Springer International Publishing. https://link.springer.com/chapter/10.1007/978-3-319-28495-8_1 DOI: https://doi.org/10.1007/978-3-319-28495-8_1
Stevens, C. F. (1979). The neuron. Scientific American, 241(3), 54-65. https://www.jstor.org/stable/24965287 DOI: https://doi.org/10.1038/scientificamerican0979-54
Villar, A., & de Andrade, C. R. V. (2024). Supervised machine learning algorithms for predicting student dropout and academic success: a comparative study. Discover Artificial Intelligence, 4(1), 2. https://link.springer.com/article/10.1007/s44163-023-00079-z DOI: https://doi.org/10.1007/s44163-023-00079-z
Zhao, H., & Zhang, F. (2025). A Tree Soft Set Framework for Evaluating Teaching Quality in University Physics Programs: Enhancing Precision and Decision-Making. Neutrosophic Sets and Systems, 80(1), 5. https://digitalrepository.unm.edu/nss_journal/vol80/iss1/5/
Zogopoulos, K., Gioti, L., Raptis, N., & Karatzas, A. (2025). Teaching soft skills to students through artificial intelligence. IOSR Journal of Research & Method in Education, 15(1), 23-33. https://www.iosrjournals.org/iosr-jrme.html
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2025 Marija Mojsilović, Muzafer Saračević, Selver Pepić, Suad Bećirović, Milica Tufegdžić

This work is licensed under a Creative Commons Attribution 4.0 International License.
Plaudit
Accepted 2025-09-16
Published 2025-12-20


