Can Voice Characteristics Predict the Severity of Depression: A Study on Serbian-Speaking Participants

Authors

  • Gordana Calić Department of Speech and Language Pathology, Faculty of Special Education and Rehabilitation, University of Belgrade, Belgrade, Serbia https://orcid.org/0000-0003-2312-1641
  • Branimir Radmanović Department of Psychiatry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia; Psychiatric Clinic, University Clinical Center Kragujevac, Kragujevac, Serbia https://orcid.org/0000-0002-1690-4691
  • Mirjana Petrović-Lazić Department of Speech and Language Pathology, Faculty of Special Education and Rehabilitation, University of Belgrade, Belgrade, Serbia https://orcid.org/0000-0002-9496-7620
  • Dragana Ignjatović Ristić Department of Psychiatry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia; Psychiatric Clinic, University Clinical Center Kragujevac, Kragujevac, Serbia https://orcid.org/0000-0002-2814-3105
  • Nikola Subotić Department of Psychiatry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia; Psychiatric Clinic, University Clinical Center Kragujevac, Kragujevac, Serbia https://orcid.org/0009-0003-7517-7150
  • Milena Mladenović Psychiatric Clinic, University Clinical Center Kragujevac, Kragujevac, Serbia; Department of Psychology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia https://orcid.org/0000-0002-4973-2857

DOI:

https://doi.org/10.23947/2334-8496-2025-13-2-289-310

Keywords:

depression severity, predictors, Regression, Serbian language, acoustic analysis, perceptual analysis, Biomarker, depression recognition

Abstract

There is a growing interest in detecting depression through vocal indicators for the purpose of early diagnosis and therapeutic monitoring. Thus, research on voice characteristics in different language areas among individuals with depression may potentially contribute to the standardization of vocal analysis and the development of automatic recognition programs. This study aims to determine whether specific voice characteristics can predict the severity of depression using the Montgomery-Asberg Depression Rating Scale (MADRS) in a sample of Serbian-speaking participants. The analysis included perceptual (GRBAS scale parameters) and acoustic (parameters of frequency variability, intensity variability, and noise and tremor estimation using the MDVP software) voice characteristics in a sample of 100 participants. The sample was divided into two groups: an experimental group of participants diagnosed with depressive disorder (N = 45), including an equal number of participants with mild, moderate, and severe depression (N = 15), and a control group of participants without a depressive disorder diagnosis or depression symptoms (N = 55). The prediction of depression severity based on voice characteristics was conducted using hierarchical regression analysis. The results indicate statistically significant differences in nearly all acoustic and all perceptual voice characteristics among participants with different levels of depression symptoms (MADRS score). Post-hoc analysis revealed no differences in acoustic characteristics between subgroups with different depression severity levels. However, significant differences in perceptual characteristics were found among all subgroups, except between mild and moderate depression. After controlling for gender, age, and smoking status, depression severity demonstrated statistically significant effects on nearly all acoustic and all perceptual voice characteristics. Both perceptual and acoustic voice characteristics can predict the severity of depression. The acoustic parameter of peak amplitude variation (vAm) and the perceptual parameters of hoarseness (G), breathiness (B), asthenia (A), and strain (S) were significant predictors of depression severity. Voice may hold potential as an indicative marker in predicting the severity of depression measured by the MADRS scale. The acoustic parameter related to intensity variation and the perceptual parameters of the GRBAS scale (except voice roughness) appear to be promising voice characteristics in training depression recognition models. Identifying vocal indicators as markers for detecting mental disorders, such as depression, through regression analysis may serve as a foundation for the development of artificial intelligence models for its recognition and may have future clinical relevance.

Downloads

Download data is not yet available.

References

Abitbol, J., Abitbol, P., & Abitbol, B. (1999). Sex hormones and the female voice. Journal of Voice, 13(3), 424-446. https://doi.org/10.1016/S0892-1997(99)80048-4 DOI: https://doi.org/10.1016/S0892-1997(99)80048-4

Afshan, A., Guo, J., Park, S. J., Ravi, V., Flint, J., & Alwan, A. (2018). Effectiveness of voice quality features in detecting depression. Proceedings of the 19th Annual Conference of the International Speech Communication Association (Interspeech 2018), 1676-1680. https://doi.org/10.21437/Interspeech.2018-1399 DOI: https://doi.org/10.21437/Interspeech.2018-1399

Alghowinem, S., Goecke, R., Wagner, M., Epps, J., Parker, G., & Breakspear, M. (2013). Characterising depressed speech for classification. Proceedings of the 14th Annual Conference of the International Speech Communication Association (Interspeech 2013), 2534-2538. https://doi.org/10.21437/Interspeech.2013-571 DOI: https://doi.org/10.21437/Interspeech.2013-571

Almaghrabi, S. A., Clark, S. R., & Baumert, M. (2023). Bio-acoustic features of depression: A review. Biomedical Signal Processing and Control, 85, 105020. https://doi.org/10.1016/j.bspc.2023.105020 DOI: https://doi.org/10.1016/j.bspc.2023.105020

Alpert, M., Pouget, E. R., & Silva, R. R. (2001). Reflections of depression in acoustic measures of the patient’s speech. Journal of Affective Disorders, 66(1), 59-69. https://doi.org/10.1016/S0165-0327(00)00335-9 DOI: https://doi.org/10.1016/S0165-0327(00)00335-9

American Psychiatric Association (APA) (2013). Diagnostic and Statistical Manual of Mental Disorders (5th ed.). https://doi.org/10.1176/appi.books.9780890425596 DOI: https://doi.org/10.1176/appi.books.9780890425596

Arsenić, I., Jovanović Simić, N., Petrović Lazić, M., Šehović, I., & Drljan, B. (2021). Characteristics of speech and voice as predictors of the quality of communication in adults with hypokinetic dysarthria. Serbian Journal of Experimental and Clinical Research, 22(2), 157-165. https://doi.org/10.2478/sjecr-2018-0081 DOI: https://doi.org/10.2478/sjecr-2018-0081

Ayoub, M. R., Larrouy-Maestri, P., & Morsomme, D. (2019). The effect of smoking on the fundamental frequency of the speaking voice. Journal of Voice, 33(5), 802.e11-802.e16. https://doi.org/10.1016/j.jvoice.2018.04.001 DOI: https://doi.org/10.1016/j.jvoice.2018.04.001

Bjelica, M. (2012). Speech rhythm in English and Serbian: A critical study of traditional and modern approaches. Filozofski fakultet Novi Sad. ISBN 978-86-6065-111-4

Calić, G., Petrović-Lazić, M., Mentus, T., & Babac, S. (2022a). Akustičke karakteristike glasa kod odraslih osoba sa depresivnim poremećajem. Psihološka istraživanja, 25(2), 183-203. https://doi.org/10.5937/psistra25-39224 DOI: https://doi.org/10.5937/PSISTRA25-39224

Calić, G., Glumbić, N., Petrović-Lazić, M., Đorđević, M., & Mentus, T. (2022b). Searching for best predictors of paralinguistic comprehension and production of emotions in communication in adults with moderate intellectual disability. Frontiers in Psychology, 13, 884242. https://doi.org/10.3389/fpsyg.2022.884242 DOI: https://doi.org/10.3389/fpsyg.2022.884242

Cannizzaro, M., Harel, B., Reilly, N., Chappell, P., & Snyder, P. J. (2004). Voice acoustical measurement of the severity of major depression. Brain and Cognition, 56(1), 30-35. https://doi.org/10.1016/j.bandc.2004.05.003 DOI: https://doi.org/10.1016/j.bandc.2004.05.003

Chlasta, K., Wołk, K., & Krejtz, I. (2019). Automated speech-based screening of depression using deep convolutional neural networks. Procedia Computer Science, 164, 618-628. https://doi.org/10.1016/j.procs.2019.12.228 DOI: https://doi.org/10.1016/j.procs.2019.12.228

Ćuk-Jovanović, L. (2002). Akustička analiza govornog signala pacijenata sa depresivnim poremećajem – karakteristike trajanja. Engrami, 24(2), 15-23.

Ćuk-Jovanović, L. (2003). Intenzitet govornog signala pacijenata sa depresivnim poremećajem. Govor i jezik (str. 217-223). Institut za eksperimentalnu fonetiku i patologiju govora. ISBN 86-81879-06-5

Cummins, N., Sethu, V., Epps, J., Schnieder, S., & Krajewski, J. (2015). Analysis of acoustic space variability in speech affected by depression. Speech Communication, 75, 27-49. https://doi.org/10.1016/j.specom.2015.09.003 DOI: https://doi.org/10.1016/j.specom.2015.09.003

Cummins, N., Sethu, V., Epps, J., Williamson, J. R., Quatieri, T. F., & Krajewski, J. (2020). Generalized two-stage rank regression framework for depression score prediction from speech. IEEE Transactions on Affective Computing, 11(2), 272-283. https://doi.org/10.1109/TAFFC.2017.2766145 DOI: https://doi.org/10.1109/TAFFC.2017.2766145

Darby, J. K., Simmons, N., & Berger, P. A. (1984). Speech and voice parameters of depression: A pilot study. Journal of Communication Disorders, 17(2), 75-85. https://doi.org/10.1016/0021-9924(84)90013-3 DOI: https://doi.org/10.1016/0021-9924(84)90013-3

Du, M., Zhang, W., Wang, T., Liu, S., & Ming, D. (2022). An automatic depression recognition method from spontaneous pronunciation using machine learning. Proceedings of the 2022 9th International Conference on Biomedical and Bioinformatics Engineering (ICBBE ‘22), 133-139. https://doi.org/10.1145/3574198.3574219 DOI: https://doi.org/10.1145/3574198.3574219

Ellgring, H., & Scherer, K. R. (1996). Vocal indicators of mood change in depression. Journal of Nonverbal Behavior, 20(2), 83-110. https://doi.org/10.1007/BF02253071 DOI: https://doi.org/10.1007/BF02253071

Gerratt, B. R., Kreiman, J., & Garellek, M. (2016). Comparing measures of voice quality from sustained phonation and continuous speech. Journal of Speech Language and Hearing Research, 59(5), 994-1001. https://doi.org/10.1044/2016_JSLHR-S-15-0307 DOI: https://doi.org/10.1044/2016_JSLHR-S-15-0307

Hashim, N. W., Wilkes, M., Salomon, R., Meggs, J., & France, D. J. (2017). Evaluation of voice acoustics as predictors of clinical depression scores. Journal of Voice, 31(2), 256.e1-256.e6. https://doi.org/10.1016/j.jvoice.2016.06.006 DOI: https://doi.org/10.1016/j.jvoice.2016.06.006

Huang, X., Wang, F., Gao, Y., Liao, Y., Zhang, W., Zhang, L., & Xu, Z. (2024). Depression recognition using voice-based pre-training model. Scientific Reports, 14, 12734. https://doi.org/10.1038/s41598-024-63556-0 DOI: https://doi.org/10.1038/s41598-024-63556-0

Hönig, F., Batliner, A., Nöth, E., Schnieder, S., & Krajewski, J. (2014). Automatic modelling of depressed speech: Relevant features and relevance of gender. Proceedings of the 15th Annual Conference of the International Speech Communication Association (INTERSPEECH 2014), 1248-1252. https://opus.bibliothek.uni-augsburg.de/opus4/frontdoor/deliver/index/docId/67964/file/i14_1248.pdf DOI: https://doi.org/10.21437/Interspeech.2014-313

Ignjatović Ristić D., Hinić, D., & Jović, J. (2012). Evaluation of the Beck Depression Inventory in a nonclinical student sample. West Indian Medical Journal, 61(5), 489-493. https://scidar.kg.ac.rs/handle/123456789/9559 DOI: https://doi.org/10.7727/wimj.2011.215

Isshiki, N., Okamura, H., Tanabe, M., & Morimoto, M. (1969). Differential diagnosis of hoarseness. Folia Phoniatrica et Logopaedica, 21(1), 9-19. https://doi.org/10.1159/000263230 DOI: https://doi.org/10.1159/000263230

Jia, Y., Liang, Y., & Zhu, T. (2019). An analysis of voice quality of Chinese patients with depression. Proceedings of the 22nd Conference of the Oriental COCOSDA International Committee for the Co-ordination and Standardisation of Speech Databases and Assessment Techniques (O-COCOSDA), 1-6. https://doi.org/10.1109/O-COCOSDA46868.2019.9060848 DOI: https://doi.org/10.1109/O-COCOSDA46868.2019.9060848

Jiang, H., Hu, B., Liu, Z., Yan, L., Wang, T., Liu, F., Kang, H., & Li, X. (2017). Investigation of different speech types and emotions for detecting depression using different classifiers. Speech Communication, 90, 39-46. https://doi.org/10.1016/j.specom.2017.04.001 DOI: https://doi.org/10.1016/j.specom.2017.04.001

Kiss, G., & Jenei, A. Z. (2020). Investigation of the accuracy of depression prediction based on speech processing. Proceedings of the 43rd International Conference on Telecommunications and Signal Processing (TSP), 129-132. https://doi.org/10.1109/TSP49548.2020.9163495 DOI: https://doi.org/10.1109/TSP49548.2020.9163495

Lasser, K., Wesley, B. J., Steffie, W., Himmelstein, D. U., McCormick, D., & Bor, D. H. (2000). Smoking and mental illness. JAMA, 284(20), 2606-2610. https://doi.org/10.1001/jama.284.20.2606 DOI: https://doi.org/10.1001/jama.284.20.2606

Laukkanen, A-M., & Sundberg, J. (2008). Peak-to-peak glottal flow amplitude as a function of F0. Journal of Voice, 22(6), 614-621. https://doi.org/10.1016/j.jvoice.2007.01.003 DOI: https://doi.org/10.1016/j.jvoice.2007.01.003

Liang, L., Wang, Y., Ma, H., Zhang, R., Liu, R., Zhu, R., Zheng, Z., Zhang, X., & Wang, F. (2024). Enhanced classification and severity prediction of major depressive disorder using acoustic features and machine learning. Frontiers in Psychiatry, 15, 1422020. https://doi.org/10.3389/fpsyt.2024.1422020 DOI: https://doi.org/10.3389/fpsyt.2024.1422020

Liu, Z., Hu, B., Liu, F., & Kang, H. (2016). Evaluation of depression severity in speech. Proceedings of the International Conference on Brain and Health Informatics (BHI 2016), 312–321. https://doi.org/10.1007/978-3-319-47103-7_31 DOI: https://doi.org/10.1007/978-3-319-47103-7_31

Menne, F., Dörr, F., Schräder, J., Tröger, J., Habel, U., König, A., & Wagels, L. (2024). The voice of depression: speech features as biomarkers for major depressive disorder. BMC Psychiatry, 24(1), 794. https://doi.org/10.1186/s12888-024-06253-6 DOI: https://doi.org/10.1186/s12888-024-06253-6

Mihajlović, G., Vojvodić, P., Vojvodić, J., Andonov, A., & Hinić, D. (2021). Validation of the Montgomery-Åsberg depression rating scale in depressed patients in Serbia. Srpski arhiv za celokupno lekarstvo, 149(5-6), 316-321. https://doi.org/10.2298/SARH200401004M DOI: https://doi.org/10.2298/SARH200401004M

Montgomery, S. A., & Åsberg, M. (1979). A new depression scale designed to be sensitive to change. The British Journal of Psychiatry, 134, 382-389. https://doi.org/10.1192/bjp.134.4.382 DOI: https://doi.org/10.1192/bjp.134.4.382

Mundt, J. C., Snyder, P. J., Cannizzaro, M. S., Chappie, K., & Geralts, D. S. (2007). Voice acoustic measures of depression severity and treatment response collected via interactive voice response (IVR) technology. Journal of Neurolinguistics, 20(1), 50-64. https://doi.org/10.1016/j.jneuroling.2006.04.001 DOI: https://doi.org/10.1016/j.jneuroling.2006.04.001

Mundt, J. C., Vogel, A. P., Feltner, D. E., & Lenderking, W. R. (2012). Vocal acoustic biomarkers of depression severity and treatment response. Biological Psychiatry, 72(7), 580-587. https://doi.org/10.1016/j.biopsych.2012.03.015 DOI: https://doi.org/10.1016/j.biopsych.2012.03.015

Müller, M. J., Himmerich, H., Kienzle, B., & Szegedi, A. (2003). Differentiating moderate and severe depression using the Montgomery–Åsberg depression rating scale (MADRS). Journal of Affective Disorders, 77(3), 255-260. https://doi.org/10.1016/s0165-0327(02)00120-9 DOI: https://doi.org/10.1016/S0165-0327(02)00120-9

Nejati, S., Ariai, N., Björkelund, C., Skoglund, I., Petersson, E-L., Augustsson, P., Hange, D., & Svenningsson, I. (2020). Correspondence between the Neuropsychiatric Interview M.I.N.I. and the BDI-II and MADRS-S self-rating instruments as diagnostic tools in primary care patients with depression. International Journal of General Medicine, 13, 177-183. DOI: https://doi.org/10.2147/IJGM.S243150

Nguyen, D. D., Novakovic, D., & Madill, C. (2024). Voice disorder discrimination using vowel acoustic measures in female speakers. International Journal of Language & Communication Disorders, 59(5), 2087-2102. https://doi.org/10.1111/1460-6984.13081 DOI: https://doi.org/10.1111/1460-6984.13081

Nikolić, D. (2016). Acoustic analysis of English vowels produced by American speakers and highly competent Serbian L2 speakers. Facta Universitatis Series: Linguistics and Literature, 14(1), 85-101.

Petrović-Lazić, M., & Kosanović, R. (2008). Vokalna rehabilitacija glasa. Nova naučna. ISBN 978-86-87449-00-8

Petrović-Lazić, M., Jovanović-Simić, N., Šehović, I., & Ćalasan, S. (2016). Uticaj zamora na akustičke karakteristike glasa kod vokalnih profesionalaca, Biomedicinska istraživanja, 7(1), 6-10. https://doi.org/10.7251/BII1601006P DOI: https://doi.org/10.7251/bii1601006p

Petrović-Lazić, M. (2021). Instrumentalne i test metode kliničkog ispitivanja glasa. Nova poetika. ISBN 978-86-902700-2-6

Petrović-Lazić, M., & Ilić Savić, I. (2023). Changes in the level of sex hormones with aging and their influence on the voice. Zdravstvena zaštita, 52(3), 56-65. https://www.doi.org/10.5937/zdravzast52-44412 DOI: https://doi.org/10.5937/zdravzast52-44412

Quatieri, T., & Malyska, N. (2012). Vocal-source biomarkers for depression: A link to psychomotor activity. Proceedings of the 13th Annual Conference of the International Speech Communication Association (Interspeech 2012), 1059-1062. https://www.isca-archive.org/interspeech_2012/quatieri12_interspeech.pdf DOI: https://doi.org/10.21437/Interspeech.2012-311

Radmanović, B., Đukić-Dejanović, S., Milovanović, D. R., & Đorđević, N. (2017). Cigarette smoking and heavy coffee drinking affect therapeutic response to olanzapine. Srpski arhiv za celokupno lekarstvo, 146(1-2), 43-47. https://doi.org/10.2298/SARH170307122R DOI: https://doi.org/10.2298/SARH170307122R

Rejaibi, E., Komaty, A., Meriaudeau, F., Agrebi, S., & Othmani, A. (2022). MFCC-based Recurrent Neural Network for automatic clinical depression recognition and assessment from speech. Biomedical Signal Processing and Control, 71, 103107. http://doi.org/10.1016/j.bspc.2021.103107 DOI: https://doi.org/10.1016/j.bspc.2021.103107

Rudin, C. (2019). Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nature Machine Intelligence, 1, 206-215. https://doi.org/10.1038/s42256-019-0048-x DOI: https://doi.org/10.1038/s42256-019-0048-x

Sahu, S., & Espy-Wilson, C. (2016). Speech features for depression detection. Proceedings of the 17th Annual Conference of the International Speech Communication Association (Interspeech 2016), 1928-1932. https://www.isca-archive.org/interspeech_2016/sahu16_interspeech.pdf DOI: https://doi.org/10.21437/Interspeech.2016-1566

Šehović, I., Petrović-Lazić, M., & Jovanović-Simić, N. (2017). Akustička i perceptivna analiza ezofagealnog i traheoezofagealnog glasa. Specijalna edukacija i rehabilitacija, 16(3), 289-307. https://doi.org/10.5937/specedreh16-13683 DOI: https://doi.org/10.5937/specedreh1703289S

Seneviratne, N., & Espy-Wilson, C. (2021). Speech based depression severity level classification using a multi-stage dilated CNN-LSTM model. Proceedings of the 22nd Annual Conference of the International Speech Communication Association (Interspeech 2021), 2526-2530. https://doi.org/10.21437/Interspeech.2021-1967 DOI: https://doi.org/10.21437/Interspeech.2021-1967

Shin, D., Cho, W. I., Park, C. H. K., Rhee, S. J., Kim, M. J., Lee, H., Kim, N. S., & Ahn, Y. M. (2021). Detection of minor and major depression through voice as a biomarker using machine learning. Journal of Clinical Medicine, 10(14), 3046. https://doi.org/10.3390/jcm10143046 DOI: https://doi.org/10.3390/jcm10143046

Silva, W. J., Lopes, L., Galdino, M. K. C., & Almeida, A. A. (2024). Voice acoustic parameters as predictors of depression. Journal of Voice, 38(1), 77-85. https://doi.org/10.1016/j.jvoice.2021.06.018 DOI: https://doi.org/10.1016/j.jvoice.2021.06.018

Songur, E. T., Hafizoğlu, M., Aydinli, F. E., İncebay, Ö, Parlak, M. M., & Balci, C. (2025). Analysis of the auditory-perceptual voice quality in older and younger adults without self-reported voice complaints. Journal of Voice, In Press. https://doi.org/10.1016/j.jvoice.2024.12.022 DOI: https://doi.org/10.1016/j.jvoice.2024.12.022

Stráník, A., Čmejla, R., & Vokřál, J. (2014). Acoustic parameters for classification of breathiness in continuous speech according to the GRBAS scale. Journal of Voice, 28(5), 653.e9–653.e17. https://doi.org/10.1016/j.jvoice.2013.07.016 DOI: https://doi.org/10.1016/j.jvoice.2013.07.016

Stubbs, B., Vancampfort, D., Firth, J., Solmi, M., Siddiqi, N., Smith, L., Carvalho, A. F., & Koyanagi, A. (2018). Association between depression and smoking: A global perspective from 48 low- and middle-income countries. Journal of Psychiatric Research, 103, 142-149. https://doi.org/10.1016/j.jpsychires.2018.05.018 DOI: https://doi.org/10.1016/j.jpsychires.2018.05.018

Taguchi, T., Tachikawa, H., Nemoto, K., Suzuki, M., Nagano, T., Tachibana, R., Nishimura, M., & Arai, T. (2017). Major depressive disorder discrimination using vocal acoustic features. Journal of Affective Disorders, 225, 214-220. https://doi.org/10.1016/j.jad.2017.08.038 DOI: https://doi.org/10.1016/j.jad.2017.08.038

Vahid-Ansari, F. & Albert, P. R. (2021). Rewiring of the serotonin system in major depression. Frontiers in Psychiatry, 12, 802581. https://doi.org/10.3389/fpsyt.2021.802581 DOI: https://doi.org/10.3389/fpsyt.2021.802581

Wadle, L. M., Ebner-Priemer, U. W., Foo, J. C., Yamamoto, Y., Streit, F., Witt, S. H., Frank, J., Zillich, L., Limberger, M. F., Ablimit, A., Schultz, T., Gilles, M., Rietschel, M., & Sirignano, L. (2024). Speech features as predictors of momentary depression severity in patients with depressive disorder undergoing sleep deprivation therapy: Ambulatory assessment pilot study. JMIR Mental Health, 11, e49222. https://doi.org/10.2196/49222. DOI: https://doi.org/10.2196/49222

Wang, J., Zhang, L., Liu, T., Pan, W., Hu, B., & Zhu, T. (2019). Acoustic differences between healthy and depressed people: a cross-situation study. BMC Psychiatry, 19(1), 300. https://doi.org/10.1186/s12888-019-2300-7 DOI: https://doi.org/10.1186/s12888-019-2300-7

Wang, Y., Liang, L., Zhang, Z., Xu, X., Liu, R., Fang, H., Zhang, R., Wei, Y., Liu, Z., Zhu, R., Zhang, X., & Wang, F. (2023). Fast and accurate assessment of depression based on voice acoustic features: a cross-sectional and longitudinal study. Frontiers in Psychiatry, 14, 1195276. https://doi.org/10.3389/fpsyt.2023.1195276 DOI: https://doi.org/10.3389/fpsyt.2023.1195276

Williamson, J. R., Young, D., Nierenberg, A. A., Niemi, J., Helfer, B. S., & Quatieri, T. F. (2018). Tracking depression severity from audio and video based on speech articulatory coordination. Computer Speech & Language, 55, 40-56. https://doi.org/10.1016/j.csl.2018.08.004 DOI: https://doi.org/10.1016/j.csl.2018.08.004

Yalamanchili, B., Kota, N. S., Abbaraju, M. S., Nadella, V. S. S., & Alluri, S. V. (2020). Real-time acoustic based depression detection using machine learning techniques. Proceedings of the 2020 International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE), 1-6. https://ieeexplore.ieee.org/document/9077698 DOI: https://doi.org/10.1109/ic-ETITE47903.2020.394

Yamamoto, M., Takamiya, A., Sawada, K., Yoshimura, M., Kitazawa, M., Liang, K-C., Fujita, T., Mimura, M., & Kishimoto, T. (2020). Using speech recognition technology to investigate the association between timing-related speech features and depression severity. PLoS ONE, 15(9), e0238726. https://doi.org/10.1371/journal.pone.0238726 DOI: https://doi.org/10.1371/journal.pone.0238726

Yang, Y., Fairbairn, C., & Cohn, J. F. (2013). Detecting depression severity from vocal prosody. IEEE Transactions on Affective Computing, 4(2), 142-150. https://doi.org/10.1109/T-AFFC.2012.38 DOI: https://doi.org/10.1109/T-AFFC.2012.38

Yu, Y. H., Shafer, V. L., & Sussman, E. S. (2017) Neurophysiological and behavioral responses of Mandarin lexical tone processing. Frontiers in Neuroscience, 11, 95. https://doi.org/10.3389/fnins.2017.00095 DOI: https://doi.org/10.3389/fnins.2017.00095

Zhang, L., Duvvuri, R., Chandra, K. K. L., Nguyen, T., & Ghomi, R. H. (2020). Automated voice biomarkers for depression symptoms using an online cross-sectional data collection initiative. Depression and Anxiety, 37(7), 657-669. https://doi.org/10.1002/da.23020 DOI: https://doi.org/10.1002/da.23020

Zhao, Q., Fan, H-Z., Li, Y-L., Liu, L., Wu, Y-X., Zhao, Y-L., Tian, Z-X., Wang, Z-R., Tan, Y-L., & Tan, S-P. (2022). Vocal acoustic features as potential biomarkers for identifying/diagnosing depression: A cross-sectional study. Frontiers in Psychiatry, 13, 815678. https://doi.org/10.3389/fpsyt.2022.815678 DOI: https://doi.org/10.3389/fpsyt.2022.815678

Downloads

Published

2025-08-26

How to Cite

Calić, G., Branimir Radmanović, Mirjana Petrović-Lazić, Dragana Ignjatović Ristić, Subotić, N., & Mladenović, M. (2025). Can Voice Characteristics Predict the Severity of Depression: A Study on Serbian-Speaking Participants. International Journal of Cognitive Research in Science, Engineering and Education (IJCRSEE), 13(2), 289–310. https://doi.org/10.23947/2334-8496-2025-13-2-289-310

Metrics

Plaudit

Received 2025-04-11
Accepted 2025-07-21
Published 2025-08-26